CSpace

浏览/检索结果: 共7条,第1-7条 帮助

已选(0)清除 条数/页:   排序方式:
DTDNet: Dynamic Target Driven Network for pedestrian trajectory prediction 期刊论文
FRONTIERS IN NEUROSCIENCE, 2024, 卷号: 18, 页码: 11
作者:  Liu, Shaohua;  Sun, Jingkai;  Yao, Pengfei;  Zhu, Yinglong;  Mao, Tianlu;  Wang, Zhaoqi
收藏  |  浏览/下载:1/0  |  提交时间:2024/12/06
multimodal trajectory prediction  pedestrian intention prediction  multi-precision motion prediction  multi-task neural network  trajectory endpoint prediction  
A Fusion Crowd Simulation Method: Integrating Data with Dynamics, Personality with Common 期刊论文
COMPUTER GRAPHICS FORUM, 2022, 卷号: 41, 期号: 8, 页码: 131-142
作者:  Mao, Tianlu;  Wang, Ji;  Meng, Ruoyu;  Yan, Qinyuan;  Liu, Shaohua;  Wang, Zhaoqi
收藏  |  浏览/下载:14/0  |  提交时间:2023/12/04
Data-driven based double-layer bicycle simulation model 期刊论文
COMPUTER ANIMATION AND VIRTUAL WORLDS, 2022, 页码: 17
作者:  Mao, Tianlu;  Fang, Zhong;  Yan, Qinyuan;  Meng, Ruoyu;  Liu, Shaohua;  Wang, Zhaoqi
收藏  |  浏览/下载:31/0  |  提交时间:2022/12/07
bicycle simulation  data-driven  double-wheel kinematic  
MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction 期刊论文
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 卷号: 2022, 页码: 10
作者:  Liu, Shaohua;  Liu, Haibo;  Wang, Yisu;  Sun, Jingkai;  Mao, Tianlu
收藏  |  浏览/下载:24/0  |  提交时间:2022/12/07
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data 期刊论文
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 卷号: 2021, 页码: 12
作者:  Liu, Shaohua;  Dai, Shijun;  Sun, Jingkai;  Mao, Tianlu;  Zhao, Junsuo;  Zhang, Heng
收藏  |  浏览/下载:29/0  |  提交时间:2022/12/07
CoL-GAN: Plausible and Collision-Less Trajectory Prediction by Attention-Based GAN 期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 101662-101671
作者:  Liu, Shaohua;  Liu, Haibo;  Bi, Huikun;  Mao, Tianlu
收藏  |  浏览/下载:59/0  |  提交时间:2020/12/10
Trajectory  Generative adversarial networks  Gallium nitride  Predictive models  Collision avoidance  Decoding  Generators  Trajectory prediction  generative adversarial network  deep learning  
Image-Based Rendering for Large-Scale Outdoor Scenes With Fusion of Monocular and Multi-View Stereo Depth 期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 117551-117565
作者:  Liu, Shaohua;  Li, Minghao;  Zhang, Xiaona;  Liu, Shuang;  Li, Zhaoxin;  Liu, Jing;  Mao, Tianlu
收藏  |  浏览/下载:319/0  |  提交时间:2020/12/10
Image-based rendering  multi-view stereo  monocular depth estimation  view synthesis  outdoor scenes