CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DTDNet: Dynamic Target Driven Network for pedestrian trajectory prediction
Liu, Shaohua1; Sun, Jingkai1,2; Yao, Pengfei2,3; Zhu, Yinglong1,2; Mao, Tianlu2; Wang, Zhaoqi2
2024-04-30
发表期刊FRONTIERS IN NEUROSCIENCE
卷号18页码:11
摘要Predicting the trajectories of pedestrians is an important and difficult task for many applications, such as robot navigation and autonomous driving. Most of the existing methods believe that an accurate prediction of the pedestrian intention can improve the prediction quality. These works tend to predict a fixed destination coordinate as the agent intention and predict the future trajectory accordingly. However, in the process of moving, the intention of a pedestrian could be a definite location or a general direction and area, and may change dynamically with the changes of surrounding. Thus, regarding the agent intention as a fixed 2-d coordinate is insufficient to improve the future trajectory prediction. To address this problem, we propose Dynamic Target Driven Network for pedestrian trajectory prediction (DTDNet), which employs a multi-precision pedestrian intention analysis module to capture this dynamic. To ensure that this extracted feature contains comprehensive intention information, we design three sub-tasks: predicting coarse-precision endpoint coordinate, predicting fine-precision endpoint coordinate and scoring scene sub-regions. In addition, we propose a original multi-precision trajectory data extraction method to achieve multi-resolution representation of future intention and make it easier to extract local scene information. We compare our model with previous methods on two publicly available datasets (ETH-UCY and Stanford Drone Dataset). The experimental results show that our DTDNet achieves better trajectory prediction performance, and conducts better pedestrian intention feature representation.
关键词multimodal trajectory prediction pedestrian intention prediction multi-precision motion prediction multi-task neural network trajectory endpoint prediction
DOI10.3389/fnins.2024.1346374
收录类别SCI
语种英语
资助项目Major Program of National Natural Science Foundation of China[91938301] ; National Key Research and Development Program of China[2020YFB1710400] ; Youth Program of National Natural Science Foundation of China[62002345] ; Innovation Program of Institute of Computing Technology Chinese Academy of Sciences[E261070]
WOS研究方向Neurosciences & Neurology
WOS类目Neurosciences
WOS记录号WOS:001220613800001
出版者FRONTIERS MEDIA SA
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38969
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Mao, Tianlu
作者单位1.Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Shaohua,Sun, Jingkai,Yao, Pengfei,et al. DTDNet: Dynamic Target Driven Network for pedestrian trajectory prediction[J]. FRONTIERS IN NEUROSCIENCE,2024,18:11.
APA Liu, Shaohua,Sun, Jingkai,Yao, Pengfei,Zhu, Yinglong,Mao, Tianlu,&Wang, Zhaoqi.(2024).DTDNet: Dynamic Target Driven Network for pedestrian trajectory prediction.FRONTIERS IN NEUROSCIENCE,18,11.
MLA Liu, Shaohua,et al."DTDNet: Dynamic Target Driven Network for pedestrian trajectory prediction".FRONTIERS IN NEUROSCIENCE 18(2024):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Shaohua]的文章
[Sun, Jingkai]的文章
[Yao, Pengfei]的文章
百度学术
百度学术中相似的文章
[Liu, Shaohua]的文章
[Sun, Jingkai]的文章
[Yao, Pengfei]的文章
必应学术
必应学术中相似的文章
[Liu, Shaohua]的文章
[Sun, Jingkai]的文章
[Yao, Pengfei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。