Institute of Computing Technology, Chinese Academy IR
MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction | |
Liu, Shaohua1; Liu, Haibo1; Wang, Yisu1; Sun, Jingkai1; Mao, Tianlu2 | |
2022-04-12 | |
发表期刊 | COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE |
ISSN | 1687-5265 |
卷号 | 2022页码:10 |
摘要 | Pedestrian trajectory prediction is an essential but challenging task. Social interactions between pedestrians have an immense impact on trajectories. A better way to model social interactions generally achieves a more accurate trajectory prediction. To comprehensively model the interactions between pedestrians, we propose a multilevel dynamic spatiotemporal digraph convolutional network (MDST-DGCN). It consists of three parts: a motion encoder to capture the pedestrians' specific motion features, a multilevel dynamic spatiotemporal directed graph encoder (MDST-DGEN) to capture the social interaction features of multiple levels and adaptively fuse them, and a motion decoder to produce the future trajectories. Experimental results on public datasets demonstrate that our model achieves state-of-the-art results in both long-term and short-term predictions for both high-density and low-density crowds. |
DOI | 10.1155/2022/4192367 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Major Program of the National Natural Science Foundation of China[91938301] ; National Natural Science Foundation of China[62002345] |
WOS研究方向 | Mathematical & Computational Biology ; Neurosciences & Neurology |
WOS类目 | Mathematical & Computational Biology ; Neurosciences |
WOS记录号 | WOS:000791773700005 |
出版者 | HINDAWI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/19539 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Mao, Tianlu |
作者单位 | 1.Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Shaohua,Liu, Haibo,Wang, Yisu,et al. MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction[J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2022,2022:10. |
APA | Liu, Shaohua,Liu, Haibo,Wang, Yisu,Sun, Jingkai,&Mao, Tianlu.(2022).MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction.COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2022,10. |
MLA | Liu, Shaohua,et al."MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction".COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022(2022):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论