CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction
Liu, Shaohua1; Liu, Haibo1; Wang, Yisu1; Sun, Jingkai1; Mao, Tianlu2
2022-04-12
发表期刊COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE
ISSN1687-5265
卷号2022页码:10
摘要Pedestrian trajectory prediction is an essential but challenging task. Social interactions between pedestrians have an immense impact on trajectories. A better way to model social interactions generally achieves a more accurate trajectory prediction. To comprehensively model the interactions between pedestrians, we propose a multilevel dynamic spatiotemporal digraph convolutional network (MDST-DGCN). It consists of three parts: a motion encoder to capture the pedestrians' specific motion features, a multilevel dynamic spatiotemporal directed graph encoder (MDST-DGEN) to capture the social interaction features of multiple levels and adaptively fuse them, and a motion decoder to produce the future trajectories. Experimental results on public datasets demonstrate that our model achieves state-of-the-art results in both long-term and short-term predictions for both high-density and low-density crowds.
DOI10.1155/2022/4192367
收录类别SCI
语种英语
资助项目Major Program of the National Natural Science Foundation of China[91938301] ; National Natural Science Foundation of China[62002345]
WOS研究方向Mathematical & Computational Biology ; Neurosciences & Neurology
WOS类目Mathematical & Computational Biology ; Neurosciences
WOS记录号WOS:000791773700005
出版者HINDAWI LTD
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19539
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Mao, Tianlu
作者单位1.Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Shaohua,Liu, Haibo,Wang, Yisu,et al. MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction[J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2022,2022:10.
APA Liu, Shaohua,Liu, Haibo,Wang, Yisu,Sun, Jingkai,&Mao, Tianlu.(2022).MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction.COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2022,10.
MLA Liu, Shaohua,et al."MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction".COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022(2022):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Shaohua]的文章
[Liu, Haibo]的文章
[Wang, Yisu]的文章
百度学术
百度学术中相似的文章
[Liu, Shaohua]的文章
[Liu, Haibo]的文章
[Wang, Yisu]的文章
必应学术
必应学术中相似的文章
[Liu, Shaohua]的文章
[Liu, Haibo]的文章
[Wang, Yisu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。