CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
CoL-GAN: Plausible and Collision-Less Trajectory Prediction by Attention-Based GAN
Liu, Shaohua1,2; Liu, Haibo1; Bi, Huikun3; Mao, Tianlu3
2020
发表期刊IEEE ACCESS
ISSN2169-3536
卷号8页码:101662-101671
摘要Predicting plausible and collisionless trajectories is critical in various applications, such as robotic navigation and autonomous driving. This is a challenging task due to two major factors. First, it is difficult for deep neural networks to understand how pedestrians move to avoid collisions and how they react to each other. Second, given observed trajectories, there are multiple possible and plausible trajectories followed by pedestrians. Although an increasing number of previous works have focused on modeling social interactions and multimodality, the trajectories generated by these methods still lead to many collisions. In this work, we propose CoL-GAN, a new attention-based generative adversarial network using a convolutional neural network as a discriminator, which is able to generate trajectories with fewer collisions. Through experimental comparisons with prior works on publicly available datasets, we demonstrate that Col-GAN achieves state-of-the-art performance in terms of accuracy and collision avoidance.
关键词Trajectory Generative adversarial networks Gallium nitride Predictive models Collision avoidance Decoding Generators Trajectory prediction generative adversarial network deep learning
DOI10.1109/ACCESS.2020.2987072
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFC0804900] ; National Natural Science Foundation of China[61532002] ; Major Program of National Natural Science Foundation of China[91938301] ; National Defense Equipment Advance Research Shared Technology Program of China[41402050301-170441402065] ; Sichuan Science and Technology Major Project on New Generation Artificial Intelligence[2018GZDZX0034]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000546406500047
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15118
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Mao, Tianlu
作者单位1.Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
2.Univ Elect Sci & Technol China, Inst Elect & Informat Engn Guangdong, Dongguan 523808, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Shaohua,Liu, Haibo,Bi, Huikun,et al. CoL-GAN: Plausible and Collision-Less Trajectory Prediction by Attention-Based GAN[J]. IEEE ACCESS,2020,8:101662-101671.
APA Liu, Shaohua,Liu, Haibo,Bi, Huikun,&Mao, Tianlu.(2020).CoL-GAN: Plausible and Collision-Less Trajectory Prediction by Attention-Based GAN.IEEE ACCESS,8,101662-101671.
MLA Liu, Shaohua,et al."CoL-GAN: Plausible and Collision-Less Trajectory Prediction by Attention-Based GAN".IEEE ACCESS 8(2020):101662-101671.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Shaohua]的文章
[Liu, Haibo]的文章
[Bi, Huikun]的文章
百度学术
百度学术中相似的文章
[Liu, Shaohua]的文章
[Liu, Haibo]的文章
[Bi, Huikun]的文章
必应学术
必应学术中相似的文章
[Liu, Shaohua]的文章
[Liu, Haibo]的文章
[Bi, Huikun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。