CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
Liu, Shaohua1; Dai, Shijun1; Sun, Jingkai1; Mao, Tianlu2; Zhao, Junsuo3; Zhang, Heng3
2021-12-23
发表期刊COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE
ISSN1687-5265
卷号2021页码:12
摘要Predicting traffic data on traffic networks is essential to transportation management. It is a challenging task due to the complicated spatial-temporal dependency. The latest studies mainly focus on capturing temporal and spatial dependencies with spatially dense traffic data. However, when traffic data become spatially sparse, existing methods cannot capture sufficient spatial correlation information and thus fail to learn the temporal periodicity sufficiently. To address these issues, we propose a novel deep learning framework, Multi-component Spatial-Temporal Graph Attention Convolutional Networks (MSTGACN), for traffic prediction, and we successfully apply it to predicting traffic flow and speed with spatially sparse data. MSTGACN mainly consists of three independent components to model three types of periodic information. Each component in MSTGACN combines dilated causal convolution, graph convolution layer, and the weight-shared graph attention layer. Experimental results on three real-world traffic datasets, METR-LA, PeMS-BAY, and PeMSD7-sparse, demonstrate the superior performance of our method in the case of spatially sparse data.
DOI10.1155/2021/9134942
收录类别SCI
语种英语
资助项目Major Program of National Natural Science Foundation of China[91938301] ; National Natural Science Foundation of China[62002345]
WOS研究方向Mathematical & Computational Biology ; Neurosciences & Neurology
WOS类目Mathematical & Computational Biology ; Neurosciences
WOS记录号WOS:000772625100005
出版者HINDAWI LTD
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/18923
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Mao, Tianlu
作者单位1.Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Shaohua,Dai, Shijun,Sun, Jingkai,et al. Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data[J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2021,2021:12.
APA Liu, Shaohua,Dai, Shijun,Sun, Jingkai,Mao, Tianlu,Zhao, Junsuo,&Zhang, Heng.(2021).Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data.COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE,2021,12.
MLA Liu, Shaohua,et al."Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data".COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021(2021):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Shaohua]的文章
[Dai, Shijun]的文章
[Sun, Jingkai]的文章
百度学术
百度学术中相似的文章
[Liu, Shaohua]的文章
[Dai, Shijun]的文章
[Sun, Jingkai]的文章
必应学术
必应学术中相似的文章
[Liu, Shaohua]的文章
[Dai, Shijun]的文章
[Sun, Jingkai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。