CSpace

浏览/检索结果: 共798条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Toward Egocentric Compositional Action Anticipation with Adaptive Semantic Debiasing 期刊论文
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 卷号: 20, 期号: 5, 页码: 21
作者:  Zhang, Tianyu;  Min, Weiqing;  Liu, Tao;  Jiang, Shuqiang;  Rui, Yong
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
Egocentric video understanding  compositional action anticipation  semantic bias  adaptive counterfactual analysis  
MRFI: An Open-Source Multiresolution Fault Injection Framework for Neural Network Processing 期刊论文
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2024, 页码: 11
作者:  Huang, Haitong;  Liu, Cheng;  Xue, Xinghua;  Liu, Bo;  Li, Huawei;  Li, Xiaowei
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
Biological neural networks  Hardware  Reliability  Computational modeling  Neural networks  Fault tolerant systems  Fault tolerance  Fault evaluation  fault injection  fault simulation  multiresolution  neural network reliability  
DockingGA: enhancing targeted molecule generation using transformer neural network and genetic algorithm with docking simulation 期刊论文
BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 页码: 12
作者:  Gao, Changnan;  Bao, Wenjie;  Wang, Shuang;  Zheng, Jianyang;  Wang, Lulu;  Ren, Yongqi;  Jiao, Linfang;  Wang, Jianmin;  Wang, Xun
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
molecule generation  molecule optimization  drug discovery  deep learning  drug design  genetic algorithm  
Graph Adversarial Immunization for Certifiable Robustness 期刊论文
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 卷号: 36, 期号: 4, 页码: 1597-1610
作者:  Tao, Shuchang;  Cao, Qi;  Shen, Huawei;  Wu, Yunfan;  Hou, Liang;  Cheng, Xueqi
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
Adversarial attack  adversarial immunization  certifiable robustness  graph neural networks  node classification  
Towards generalizable Graph Contrastive Learning: An information theory perspective 期刊论文
NEURAL NETWORKS, 2024, 卷号: 172, 页码: 17
作者:  Yuan, Yige;  Xu, Bingbing;  Shen, Huawei;  Cao, Qi;  Cen, Keting;  Zheng, Wen;  Cheng, Xueqi
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
Graph Contrastive Learning  Generalization  Information theory  
CUTE: A scalable CPU-centric and Ultra-utilized Tensor Engine for convolutions 期刊论文
JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 卷号: 149, 页码: 15
作者:  Li, Wenqing;  Ye, Jinpeng;  Zhang, Fuxin;  Liu, Tianyi;  Zhang, Tingting;  Wang, Jian
收藏  |  浏览/下载:3/0  |  提交时间:2024/05/20
Tensor engine  Convolution  Scalable architecture  CPU-centric  Utilization  
Knowledge Distillation for Travel Time Estimation 期刊论文
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 页码: 12
作者:  Zhang, Haichao;  Zhao, Fang;  Wang, Chenxing;  Luo, Haiyong;  Xiong, Haoyu;  Fang, Yuchen
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
Computational modeling  Trajectory  Roads  Global Positioning System  Predictive models  Estimation  Context modeling  Spatial-travel time estimation  temporal data mining  knowledge distillation  deep learning  
Mortar-FP8: Morphing the Existing FP32 Infrastructure for High-Performance Deep Learning Acceleration 期刊论文
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 卷号: 43, 期号: 3, 页码: 878-891
作者:  Li, Hongyan;  Lu, Hang;  Li, Xiaowei
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
Deep learning accelerator  deep neural network (DNN)  fp8 format  
Fast Convolution Meets Low Precision: Exploring Efficient Quantized Winograd Convolution on Modern CPUs 期刊论文
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2024, 卷号: 21, 期号: 1, 页码: 26
作者:  Wang, Xueying;  Li, Guangli;  Jia, Zhen;  Feng, Xiaobing;  Wang, Yida
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
Deep learning  winograd convolution  low-precision computation  
Speed Planning Based on Terrain-Aware Constraint Reinforcement Learning in Rugged Environments 期刊论文
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 卷号: 9, 期号: 3, 页码: 2096-2103
作者:  Yang, Andong;  Li, Wei;  Hu, Yu
收藏  |  浏览/下载:2/0  |  提交时间:2024/05/20
Planning  Robots  Semantics  Data mining  Neural networks  Reinforcement learning  Mobile robots  Speed planning  mobile robot  rugged environments  reinforcement learning