CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Graph Adversarial Immunization for Certifiable Robustness
Tao, Shuchang1,2; Cao, Qi1,2; Shen, Huawei1,2; Wu, Yunfan1,2; Hou, Liang1,2; Cheng, Xueqi3
2024-04-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号36期号:4页码:1597-1610
摘要Despite achieving great success, graph neural networks (GNNs) are vulnerable to adversarial attacks. Existing defenses focus on developing adversarial training or model modification. In this paper, we propose and formulate graph adversarial immunization, i.e., vaccinating part of graph structure to improve certifiable robustness of graph against any admissible adversarial attack. We first propose edge-level immunization to vaccinate node pairs. Unfortunately, such edge-level immunization cannot defend against emerging node injection attacks, since it only immunizes existing node pairs. To this end, we further propose node-level immunization. To avoid computationally intensive combinatorial optimization associated with adversarial immunization, we develop AdvImmune-Edge and AdvImmune-Node algorithms to effectively obtain the immune node pairs or nodes. Extensive experiments demonstrate the superiority of AdvImmune methods. In particular, AdvImmune-Node remarkably improves the ratio of robust nodes by 79$\%$%, 294$\%$%, and 100$\%$%, after immunizing only 5$\%$% of nodes. Furthermore, AdvImmune methods show excellent defensive performance against various attacks, outperforming state-of-the-art defenses. To the best of our knowledge, this is the first attempt to improve certifiable robustness from graph data perspective without losing performance on clean graphs, providing new insights into graph adversarial learning.
关键词Adversarial attack adversarial immunization certifiable robustness graph neural networks node classification
DOI10.1109/TKDE.2023.3311105
收录类别SCI
语种英语
资助项目National Key Ramp;D Program of China
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:001181467200023
出版者IEEE COMPUTER SOC
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38735
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cao, Qi; Shen, Huawei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Data Intelligence Syst Res Ctr, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Tao, Shuchang,Cao, Qi,Shen, Huawei,et al. Graph Adversarial Immunization for Certifiable Robustness[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2024,36(4):1597-1610.
APA Tao, Shuchang,Cao, Qi,Shen, Huawei,Wu, Yunfan,Hou, Liang,&Cheng, Xueqi.(2024).Graph Adversarial Immunization for Certifiable Robustness.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,36(4),1597-1610.
MLA Tao, Shuchang,et al."Graph Adversarial Immunization for Certifiable Robustness".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 36.4(2024):1597-1610.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
百度学术
百度学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
必应学术
必应学术中相似的文章
[Tao, Shuchang]的文章
[Cao, Qi]的文章
[Shen, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。