CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Towards generalizable Graph Contrastive Learning: An information theory perspective
Yuan, Yige; Xu, Bingbing; Shen, Huawei; Cao, Qi; Cen, Keting; Zheng, Wen; Cheng, Xueqi
2024-04-01
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号172页码:17
摘要Graph Contrastive Learning (GCL) is increasingly employed in graph representation learning with the primary aim of learning node/graph representations from a predefined pretext task that can generalize to various downstream tasks. Meanwhile, the transition from a specific pretext task to diverse and unpredictable downstream tasks poses a significant challenge for GCL's generalization ability. Most existing GCL approaches maximize mutual information between two views derived from the original graph, either randomly or heuristically. However, the generalization ability of GCL and its theoretical principles are still less studied. In this paper, we introduce a novel metric GCL-GE, to quantify the generalization gap between predefined pretext and agnostic downstream tasks. Given the inherent intractability of GCL-GE, we leverage concepts from information theory to derive a mutual information upper bound that is independent of the downstream tasks, thus enabling the metric's optimization despite the variability in downstream tasks. Based on the theoretical insight, we propose InfoAdv, a GCL framework to directly enhance generalization by jointly optimizing GCL-GE and InfoMax. Extensive experiments validate the capability of InfoAdv to enhance performance across a wide variety of downstream tasks, demonstrating its effectiveness in improving the generalizability of GCL.
关键词Graph Contrastive Learning Generalization Information theory
DOI10.1016/j.neunet.2024.106125
收录类别SCI
语种英语
资助项目National Natural Science Foun-dation of China[U21B2046] ; National Natural Science Foun-dation of China[62202448] ; Na-tional Key R&D Program of China[2022YFB3103700] ; Na-tional Key R&D Program of China[2022YFB3103704]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:001179930100001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38769
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yuan, Yige; Xu, Bingbing
作者单位Chinese Acad Sci, Data Intelligence Syst Res Ctr, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Yige,Xu, Bingbing,Shen, Huawei,et al. Towards generalizable Graph Contrastive Learning: An information theory perspective[J]. NEURAL NETWORKS,2024,172:17.
APA Yuan, Yige.,Xu, Bingbing.,Shen, Huawei.,Cao, Qi.,Cen, Keting.,...&Cheng, Xueqi.(2024).Towards generalizable Graph Contrastive Learning: An information theory perspective.NEURAL NETWORKS,172,17.
MLA Yuan, Yige,et al."Towards generalizable Graph Contrastive Learning: An information theory perspective".NEURAL NETWORKS 172(2024):17.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Yige]的文章
[Xu, Bingbing]的文章
[Shen, Huawei]的文章
百度学术
百度学术中相似的文章
[Yuan, Yige]的文章
[Xu, Bingbing]的文章
[Shen, Huawei]的文章
必应学术
必应学术中相似的文章
[Yuan, Yige]的文章
[Xu, Bingbing]的文章
[Shen, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。