CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Mortar-FP8: Morphing the Existing FP32 Infrastructure for High-Performance Deep Learning Acceleration
Li, Hongyan1; Lu, Hang2,3; Li, Xiaowei1
2024-03-01
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN0278-0070
卷号43期号:3页码:878-891
摘要Vanilla deep neural networks (DNNs) after training are represented with native floating-point 32 (fp32) weights. We observe that the bit-level sparsity of these weights is very abundant in the mantissa and the distribution of exponent is aggregated, which can all be directly exploited to speed up model inference. In this article, we propose Mortar and Mortar-FP8, the offline/online software and hardware collaborative approaches for fp32 DNN acceleration. The proposed methods include the software algorithms to morph the mantissa and convert fp32 weights to fp8 format, as well as associated hardware accelerator architecture to accelerate general-purpose deep learning through optimized algorithm and specialized hardware. We highlight the following results by evaluating various deep learning tasks, including image classification, object detection, video understanding, video, and image super-resolution: 1) Mortar increase mantissa sparsity up to 1.58 x -2.09x with only a negligible similar to 0.2% accuracy loss; 2) Mortar-FP8 morph the fp32 weights to fp8 format with a minimal accuracy loss of similar to 0.3%; and 3) the corresponding hardware accelerator significantly outperforms baselines, achieving up to 6.032x and 6.99x performance improvements. The area and power of Mortar are 0.031 mm2 and 68.58 mW. Those metrics are 0.0505 mm2 and 25.16 mW for Mortar-FP8.
关键词Deep learning accelerator deep neural network (DNN) fp8 format
DOI10.1109/TCAD.2023.3329778
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:001170495100001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38823
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Lu, Hang
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
2.Chinese Acad Sci, Zhongguancun Lab, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Shanghai Innovat Ctr Processor Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Hongyan,Lu, Hang,Li, Xiaowei. Mortar-FP8: Morphing the Existing FP32 Infrastructure for High-Performance Deep Learning Acceleration[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2024,43(3):878-891.
APA Li, Hongyan,Lu, Hang,&Li, Xiaowei.(2024).Mortar-FP8: Morphing the Existing FP32 Infrastructure for High-Performance Deep Learning Acceleration.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,43(3),878-891.
MLA Li, Hongyan,et al."Mortar-FP8: Morphing the Existing FP32 Infrastructure for High-Performance Deep Learning Acceleration".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 43.3(2024):878-891.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Hongyan]的文章
[Lu, Hang]的文章
[Li, Xiaowei]的文章
百度学术
百度学术中相似的文章
[Li, Hongyan]的文章
[Lu, Hang]的文章
[Li, Xiaowei]的文章
必应学术
必应学术中相似的文章
[Li, Hongyan]的文章
[Lu, Hang]的文章
[Li, Xiaowei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。