CSpace

浏览/检索结果: 共17条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery 期刊论文
NATURE COMMUNICATIONS, 2024, 卷号: 15, 期号: 1, 页码: 19
作者:  Qi, Xiaoning;  Zhao, Lianhe;  Tian, Chenyu;  Li, Yueyue;  Chen, Zhen-Lin;  Huo, Peipei;  Chen, Runsheng;  Liu, Xiaodong;  Wan, Baoping;  Yang, Shengyong;  Zhao, Yi
收藏  |  浏览/下载:2/0  |  提交时间:2024/12/06
A novel feature integration method for named entity recognition model in product titles 期刊论文
COMPUTATIONAL INTELLIGENCE, 2024, 卷号: 40, 期号: 3, 页码: 19
作者:  Sun, Shiqi;  Zhang, Kun;  Li, Jingyuan;  Sun, Xinghang;  Cen, Jianhe;  Wang, Yuanzhuo
收藏  |  浏览/下载:1/0  |  提交时间:2024/12/06
multitask learning  named entity recognition  natural language processing  
Benchmarking spatial clustering methods with spatially resolved transcriptomics data 期刊论文
NATURE METHODS, 2024, 页码: 25
作者:  Yuan, Zhiyuan;  Zhao, Fangyuan;  Lin, Senlin;  Zhao, Yu;  Yao, Jianhua;  Cui, Yan;  Zhang, Xiao-Yong;  Zhao, Yi
收藏  |  浏览/下载:14/0  |  提交时间:2024/05/20
Improving metric-based few-shot learning with dynamically scaled softmax loss 期刊论文
IMAGE AND VISION COMPUTING, 2023, 卷号: 140, 页码: 15
作者:  Zhang, Yu;  Zuo, Xin;  Zheng, Xuxu;  Gao, Xiaoyong;  Wang, Bo;  Hu, Weiming
收藏  |  浏览/下载:9/0  |  提交时间:2024/05/20
Few-shot learning  Metric-based learning framework  Softmax loss improvement  
Temporal Dynamic Concept Modeling Network for Explainable Video Event Recognition 期刊论文
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 卷号: 19, 期号: 6, 页码: 22
作者:  Zhang, Weigang;  Qi, Zhaobo;  Wang, Shuhui;  Su, Chi;  Su, Li;  Huang, Qingming
收藏  |  浏览/下载:24/0  |  提交时间:2023/12/04
Event recognition  temporal concept receptive field  dynamic convolution  
Comprehensive SNN Compression Using ADMM Optimization and Activity Regularization 期刊论文
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 页码: 15
作者:  Deng, Lei;  Wu, Yujie;  Hu, Yifan;  Liang, Ling;  Li, Guoqi;  Hu, Xing;  Ding, Yufei;  Li, Peng;  Xie, Yuan
收藏  |  浏览/下载:37/0  |  提交时间:2022/06/21
Neurons  Computational modeling  Quantization (signal)  Optimization  Encoding  Task analysis  Synapses  Activity regularization  alternating direction method of multiplier (ADMM)  connection pruning  spiking neural network (SNN) compression  weight quantization  
Space-address decoupled scratchpad memory management for neural network accelerators 期刊论文
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 页码: 13
作者:  Zhang, Zhenxing;  Sun, Shiyan;  Chen, Xunyu;  Zhi, Tian;  Guo, Qi;  Chen, Yunji
收藏  |  浏览/下载:72/0  |  提交时间:2020/12/10
deep neural network  memory management  scratchpad memory  
ParaML: A Polyvalent Multicore Accelerator for Machine Learning 期刊论文
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 卷号: 39, 期号: 9, 页码: 1764-1777
作者:  Zhou, Shengyuan;  Guo, Qi;  Du, Zidong;  Liu, Daofu;  Chen, Tianshi;  Li, Ling;  Liu, Shaoli;  Zhou, Jinhong;  Temam, Olivier;  Feng, Xiaobing;  Zhou, Xuehai;  Chen, Yunji
收藏  |  浏览/下载:60/0  |  提交时间:2020/12/10
Neural networks  Machine learning  Testing  Support vector machines  Linear regression  Computers  Computer architecture  Accelerator  machine learning (ML) techniques  multicore accelerator  
Profit Maximization for Sponsored Data in Wireless Video Transmission Systems 期刊论文
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2020, 卷号: 19, 期号: 8, 页码: 1928-1942
作者:  Ji, Wen;  Zhu, Wenwu
收藏  |  浏览/下载:46/0  |  提交时间:2020/12/10
Streaming media  Pricing  Wireless communication  Quality of experience  Bandwidth  Data models  Broadcasting  Video transmission  sponsored data  submodular function  optimization  
Addressing Irregularity in Sparse Neural Networks Through a Cooperative Software/Hardware Approach 期刊论文
IEEE TRANSACTIONS ON COMPUTERS, 2020, 卷号: 69, 期号: 7, 页码: 968-985
作者:  Zeng, Xi;  Zhi, Tian;  Zhou, Xuda;  Du, Zidong;  Guo, Qi;  Liu, Shaoli;  Wang, Bingrui;  Wen, Yuanbo;  Wang, Chao;  Zhou, Xuehai;  Li, Ling;  Chen, Tianshi;  Sun, Ninghui;  Chen, Yunji
收藏  |  浏览/下载:60/0  |  提交时间:2020/12/10
Accelerator  architecture  deep neural networks  sparsity