CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization
Wang, Hanling1; Li, Qing2; Kang, Haidong3; Hu, Dieli2,4,5; Ma, Lianbo3; Tyson, Gareth6; Yuan, Zhenhui7; Jiang, Yong1
2024-12-01
发表期刊IEEE TRANSACTIONS ON MOBILE COMPUTING
ISSN1536-1233
卷号23期号:12页码:13945-13962
摘要Real-time video analytics on edge devices has gained increasing attention across a wide range of business areas. However, edge devices usually have limited computing resources. Consequently, conventional approaches to video analytics either deploy simplified models on the edge (resulting in low accuracy) or transmit video content to the cloud (resulting in high latency and network overheads) to enable deep learning inference (e.g., object detection). In this paper, we introduce ParaLoupe, a novel real-time video analytics system that parallelizes deep learning inference in the edge cluster with task-oriented mini models. These mini models do not attain State-of-the-Art accuracy individually, but collectively can achieve much better accuracy-latency tradeoff than State-of-the-Art models. To achieve this, ParaLoupe crops multiple single-object patches from a given video frame. These single-object patches are then sent to multiple edge devices for parallel inference with specifically designed mini models. A patch-based task scheduling algorithm is further proposed to leverage the computing resources of the edge cluster to meet the service-level objectives. Our experimental results on real-world datasets show that ParaLoupe significantly outperforms baseline methods, achieving up to 14.1x inference speedup with accuracy on par with state-of-the-art models, or improving accuracy up to 45.1% under the same latency constraints.
关键词Accuracy Task analysis Computational modeling Image edge detection Visual analytics Streaming media Real-time systems Distributed computing edge computing real-time video analytics
DOI10.1109/TMC.2024.3438155
收录类别SCI
语种英语
资助项目Major Key Project of PCL[PCL2023A06] ; National Key Research and Development Program of China[2022YFB3105000] ; Shenzhen Key Lab of Software Defined Networking[ZDSYS20140509172959989] ; National Natural Science Foundation of China[62072440] ; Beijing Natural Science Foundation[L221004]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Telecommunications
WOS记录号WOS:001359244600101
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41081
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Qing; Ma, Lianbo
作者单位1.Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
2.Peng Cheng Lab, Shenzhen 518055, Peoples R China
3.Northeastern Univ, Shenyang 110167, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100086, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.Hong Kong Univ Sci & Technol, Guangzhou 511442, Peoples R China
7.Univ Warwick, Sch Engn, Coventry CV4 7AL, England
推荐引用方式
GB/T 7714
Wang, Hanling,Li, Qing,Kang, Haidong,et al. ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization[J]. IEEE TRANSACTIONS ON MOBILE COMPUTING,2024,23(12):13945-13962.
APA Wang, Hanling.,Li, Qing.,Kang, Haidong.,Hu, Dieli.,Ma, Lianbo.,...&Jiang, Yong.(2024).ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization.IEEE TRANSACTIONS ON MOBILE COMPUTING,23(12),13945-13962.
MLA Wang, Hanling,et al."ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization".IEEE TRANSACTIONS ON MOBILE COMPUTING 23.12(2024):13945-13962.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Hanling]的文章
[Li, Qing]的文章
[Kang, Haidong]的文章
百度学术
百度学术中相似的文章
[Wang, Hanling]的文章
[Li, Qing]的文章
[Kang, Haidong]的文章
必应学术
必应学术中相似的文章
[Wang, Hanling]的文章
[Li, Qing]的文章
[Kang, Haidong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。