Institute of Computing Technology, Chinese Academy IR
ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization | |
Wang, Hanling1; Li, Qing2; Kang, Haidong3; Hu, Dieli2,4,5; Ma, Lianbo3; Tyson, Gareth6; Yuan, Zhenhui7; Jiang, Yong1 | |
2024-12-01 | |
发表期刊 | IEEE TRANSACTIONS ON MOBILE COMPUTING
![]() |
ISSN | 1536-1233 |
卷号 | 23期号:12页码:13945-13962 |
摘要 | Real-time video analytics on edge devices has gained increasing attention across a wide range of business areas. However, edge devices usually have limited computing resources. Consequently, conventional approaches to video analytics either deploy simplified models on the edge (resulting in low accuracy) or transmit video content to the cloud (resulting in high latency and network overheads) to enable deep learning inference (e.g., object detection). In this paper, we introduce ParaLoupe, a novel real-time video analytics system that parallelizes deep learning inference in the edge cluster with task-oriented mini models. These mini models do not attain State-of-the-Art accuracy individually, but collectively can achieve much better accuracy-latency tradeoff than State-of-the-Art models. To achieve this, ParaLoupe crops multiple single-object patches from a given video frame. These single-object patches are then sent to multiple edge devices for parallel inference with specifically designed mini models. A patch-based task scheduling algorithm is further proposed to leverage the computing resources of the edge cluster to meet the service-level objectives. Our experimental results on real-world datasets show that ParaLoupe significantly outperforms baseline methods, achieving up to 14.1x inference speedup with accuracy on par with state-of-the-art models, or improving accuracy up to 45.1% under the same latency constraints. |
关键词 | Accuracy Task analysis Computational modeling Image edge detection Visual analytics Streaming media Real-time systems Distributed computing edge computing real-time video analytics |
DOI | 10.1109/TMC.2024.3438155 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Major Key Project of PCL[PCL2023A06] ; National Key Research and Development Program of China[2022YFB3105000] ; Shenzhen Key Lab of Software Defined Networking[ZDSYS20140509172959989] ; National Natural Science Foundation of China[62072440] ; Beijing Natural Science Foundation[L221004] |
WOS研究方向 | Computer Science ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Telecommunications |
WOS记录号 | WOS:001359244600101 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/41081 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Qing; Ma, Lianbo |
作者单位 | 1.Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China 2.Peng Cheng Lab, Shenzhen 518055, Peoples R China 3.Northeastern Univ, Shenyang 110167, Peoples R China 4.Chinese Acad Sci, Inst Comp Technol, Beijing 100086, Peoples R China 5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 6.Hong Kong Univ Sci & Technol, Guangzhou 511442, Peoples R China 7.Univ Warwick, Sch Engn, Coventry CV4 7AL, England |
推荐引用方式 GB/T 7714 | Wang, Hanling,Li, Qing,Kang, Haidong,et al. ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization[J]. IEEE TRANSACTIONS ON MOBILE COMPUTING,2024,23(12):13945-13962. |
APA | Wang, Hanling.,Li, Qing.,Kang, Haidong.,Hu, Dieli.,Ma, Lianbo.,...&Jiang, Yong.(2024).ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization.IEEE TRANSACTIONS ON MOBILE COMPUTING,23(12),13945-13962. |
MLA | Wang, Hanling,et al."ParaLoupe: Real-Time Video Analytics on Edge Cluster via Mini Model Parallelization".IEEE TRANSACTIONS ON MOBILE COMPUTING 23.12(2024):13945-13962. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论