CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery
Qi, Xiaoning1,2; Zhao, Lianhe1,2; Tian, Chenyu3,4; Li, Yueyue3,4; Chen, Zhen-Lin2,5; Huo, Peipei6; Chen, Runsheng7; Liu, Xiaodong8; Wan, Baoping1; Yang, Shengyong3,4; Zhao, Yi1,2
2024-10-26
发表期刊NATURE COMMUNICATIONS
卷号15期号:1页码:19
摘要Understanding transcriptional responses to chemical perturbations is central to drug discovery, but exhaustive experimental screening of disease-compound combinations is unfeasible. To overcome this limitation, here we introduce PRnet, a perturbation-conditioned deep generative model that predicts transcriptional responses to novel chemical perturbations that have never experimentally perturbed at bulk and single-cell levels. Evaluations indicate that PRnet outperforms alternative methods in predicting responses across novel compounds, pathways, and cell lines. PRnet enables gene-level response interpretation and in-silico drug screening for diseases based on gene signatures. PRnet further identifies and experimentally validates novel compound candidates against small cell lung cancer and colorectal cancer. Lastly, PRnet generates a large-scale integration atlas of perturbation profiles, covering 88 cell lines, 52 tissues, and various compound libraries. PRnet provides a robust and scalable candidate recommendation workflow and successfully recommends drug candidates for 233 diseases. Overall, PRnet is an effective and valuable tool for gene-based therapeutics screening. Understanding transcriptional responses to chemical perturbations is crucial for drug discovery. Here, authors present PRnet, a deep generative model that predicts gene responses to novel chemical perturbations, enabling in-silico drug screening and the identification of candidate compounds for various diseases.
DOI10.1038/s41467-024-53457-1
收录类别SCI
语种英语
资助项目The National Key RD Program of China (2021YFC2500203), The National Natural Science Foundation of China (32341019, 32070670), Ningbo major project for high-level medical and healthcare teams (2023030615), Beijing Natural Science Foundation Haidian Origina[2022YFF1203303] ; National Key R&D Program of China[32341019] ; National Key R&D Program of China[32070670] ; National Natural Science Foundation of China[2023030615] ; Ningbo major project for high-level medical and healthcare teams[L222007] ; Beijing Natural Science Foundation Haidian Origination and Innovation Joint Fund[2024Z229] ; Ningbo Science and Technology Innovation Yongjiang 2035 Project[GZNL2023A03001] ; Major Project of Guangzhou National Laboratory[KF2422-93] ; Open Project of National Key Laboratory of Oncology Systems Medicine
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001345548100011
出版者NATURE PORTFOLIO
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/39470
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yang, Shengyong; Zhao, Yi
作者单位1.Chinese Acad Sci, Inst Comp Technol, Res Ctr Ubiquitous Comp Syst, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Sichuan Univ, West China Hosp, Canc Ctr, Dept Biotherapy, Chengdu, Sichuan, Peoples R China
4.Sichuan Univ, West China Hosp, State Key Lab Biotherapy, Chengdu, Sichuan, Peoples R China
5.Chinese Acad Sci, Chinese Acad Sci CAS, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
6.Luoyang Inst Informat Technol Ind, Luoyang, Henan, Peoples R China
7.Sichuan Univ, West China Hosp, Chengdu, Sichuan, Peoples R China
8.Univ Chinese Acad Sci, Nanjing, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Qi, Xiaoning,Zhao, Lianhe,Tian, Chenyu,et al. Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery[J]. NATURE COMMUNICATIONS,2024,15(1):19.
APA Qi, Xiaoning.,Zhao, Lianhe.,Tian, Chenyu.,Li, Yueyue.,Chen, Zhen-Lin.,...&Zhao, Yi.(2024).Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery.NATURE COMMUNICATIONS,15(1),19.
MLA Qi, Xiaoning,et al."Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery".NATURE COMMUNICATIONS 15.1(2024):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi, Xiaoning]的文章
[Zhao, Lianhe]的文章
[Tian, Chenyu]的文章
百度学术
百度学术中相似的文章
[Qi, Xiaoning]的文章
[Zhao, Lianhe]的文章
[Tian, Chenyu]的文章
必应学术
必应学术中相似的文章
[Qi, Xiaoning]的文章
[Zhao, Lianhe]的文章
[Tian, Chenyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。