CSpace

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
FedDSHAR: A dual-strategy federated learning approach for human activity recognition amid noise label user 期刊论文
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 卷号: 166, 页码: 11
作者:  Lin, Ziqian;  Jiang, Xuefeng;  Zhang, Kun;  Fan, Chongjun;  Liu, Yaya
收藏  |  浏览/下载:3/0  |  提交时间:2025/06/25
Human activity recognition  Federated learning  Label noise  Data augmentation  
FedCRAC: Improving Federated Classification Performance on Long-Tailed Data via Classifier Representation Adjustment and Calibration 期刊论文
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 卷号: 24, 期号: 1, 页码: 482-499
作者:  Li, Xujing;  Sun, Sheng;  Liu, Min;  Ren, Ju;  Jiang, Xuefeng;  He, Tianliu
收藏  |  浏览/下载:0/0  |  提交时间:2025/06/25
Tail  Data models  Training  Computational modeling  Servers  Accuracy  Feature extraction  Data heterogeneity  federated learning  long-tailed data  representation alignment  
FedCache: A Knowledge Cache-Driven Federated Learning Architecture for Personalized Edge Intelligence 期刊论文
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 卷号: 23, 期号: 10, 页码: 9368-9382
作者:  Wu, Zhiyuan;  Sun, Sheng;  Wang, Yuwei;  Liu, Min;  Xu, Ke;  Wang, Wen;  Jiang, Xuefeng;  Gao, Bo;  Lu, Jinda
收藏  |  浏览/下载:19/0  |  提交时间:2024/12/06
Computer architecture  Training  Servers  Computational modeling  Data models  Adaptation models  Performance evaluation  Distributed architecture  edge computing  personalized federated learning  knowledge distillation  communication efficiency  
FedICT: Federated Multi-Task Distillation for Multi-Access Edge Computing 期刊论文
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 卷号: 35, 期号: 6, 页码: 952-966
作者:  Wu, Zhiyuan;  Sun, Sheng;  Wang, Yuwei;  Liu, Min;  Pan, Quyang;  Jiang, Xuefeng;  Gao, Bo
收藏  |  浏览/下载:16/0  |  提交时间:2024/12/06
Computational modeling  Data models  Training  Servers  Multitasking  Adaptation models  Optimization  Distributed optimization  federated learning  knowledge distillation  multi-access edge computing  multi-task learning