CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
FedCRAC: Improving Federated Classification Performance on Long-Tailed Data via Classifier Representation Adjustment and Calibration
Li, Xujing1,2; Sun, Sheng1; Liu, Min2,3,4; Ren, Ju5; Jiang, Xuefeng1,2; He, Tianliu1,2
2025
发表期刊IEEE TRANSACTIONS ON MOBILE COMPUTING
ISSN1536-1233
卷号24期号:1页码:482-499
摘要Federated learning has been a popular distributed training paradigm that enables to train a shared model with data privacy protection. However, non-Independent Identically Distribution and long-tailed data distribution characteristics across mobile devices results in evident performance degradation, especially for classification tasks. Although plenty of research studies devote to alleviating classification performance degradation caused by highly-skewed data distribution, they still cannot improve the distinguishability of model representation on hard-to-learn tail classes, and face obvious divergence of local classifiers in FL setting. To this end, we propose Federated Classifier Representation Adjustment and Calibration to improve the representation distinguishability of tail classes and achieve inter-client representation alignment with acceptable resource consumption on attaching operations. We first design a Class Similarity-Aware Margin matrix to enlarge class representation discrepancy and improve local classifier discriminability on tail classes during client-side local training process. To mitigate the divergence of local classifiers across clients, we further propose the Self Distillation Classifier Calibration to achieve the aggregated global classifier calibration with the assistance of generated pseudo representation samples via self-distillation manner. We conduct various experiments under wide-range long-tailed and heterogeneous data settings. Experimental results show that FedCRAC outperforms state-of-the-art methods in terms of accuracy and resource consumption.
关键词Tail Data models Training Computational modeling Servers Accuracy Feature extraction Data heterogeneity federated learning long-tailed data representation alignment
DOI10.1109/TMC.2024.3466208
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2021YFB2900102] ; National Natural Science Foundation of China[62072436]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Telecommunications
WOS记录号WOS:001370229700018
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41119
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Min
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, SKLP, Beijing 100045, Peoples R China
4.Zhongguancun Lab, Beijing 100190, Peoples R China
5.Tsinghua Univ, Dept Comp Sci & Technol, BNRist, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Xujing,Sun, Sheng,Liu, Min,et al. FedCRAC: Improving Federated Classification Performance on Long-Tailed Data via Classifier Representation Adjustment and Calibration[J]. IEEE TRANSACTIONS ON MOBILE COMPUTING,2025,24(1):482-499.
APA Li, Xujing,Sun, Sheng,Liu, Min,Ren, Ju,Jiang, Xuefeng,&He, Tianliu.(2025).FedCRAC: Improving Federated Classification Performance on Long-Tailed Data via Classifier Representation Adjustment and Calibration.IEEE TRANSACTIONS ON MOBILE COMPUTING,24(1),482-499.
MLA Li, Xujing,et al."FedCRAC: Improving Federated Classification Performance on Long-Tailed Data via Classifier Representation Adjustment and Calibration".IEEE TRANSACTIONS ON MOBILE COMPUTING 24.1(2025):482-499.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xujing]的文章
[Sun, Sheng]的文章
[Liu, Min]的文章
百度学术
百度学术中相似的文章
[Li, Xujing]的文章
[Sun, Sheng]的文章
[Liu, Min]的文章
必应学术
必应学术中相似的文章
[Li, Xujing]的文章
[Sun, Sheng]的文章
[Liu, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。