CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
FedDSHAR: A dual-strategy federated learning approach for human activity recognition amid noise label user
Lin, Ziqian1; Jiang, Xuefeng2; Zhang, Kun3; Fan, Chongjun1; Liu, Yaya1
2025-05-01
发表期刊FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
ISSN0167-739X
卷号166页码:11
摘要Federated learning (FL) has recently achieved successes in privacy-sensitive health-care applications like medical analysis. Most previous studies suppose that collected user data are well-annotated, however, it a strong assumption in practice. For instance, human activity recognition (HAR) task aims to train a model which predicts a certain person's activity based on sensor data series collected from a given period of time. Due to diverse and incomplete annotation approaches, user-side data inevitably contain significant label noise, which greatly degrade model convergence and performance. In this work, we propose a novel FL framework FedDSHAR, which partitions the user-side data into the clean data subset and noisy data subset. Two strategies are utilized on two subsets to further exploit extra effective information from data, where strategic time-series augmentation is adopted on the clean subset and the semi-supervised learning scheme is used for the noisy subset. Extensive experiments conducted on three public real-world HAR datasets demonstrate that FedDSHAR outperforms six state-of-the-art methods, particularly in addressing extreme label noise in real-world distributed noisy HAR scenarios. Our code is available at https://github.com/coke2020ice/FedDSHAR.
关键词Human activity recognition Federated learning Label noise Data augmentation
DOI10.1016/j.future.2025.107724
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62006154]
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:001422274200001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40729
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Fan, Chongjun
作者单位1.Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 101408, Peoples R China
3.Shanghai Univ Finance & Econ, Sch Informat Management & Engn, Shanghai 210023, Peoples R China
推荐引用方式
GB/T 7714
Lin, Ziqian,Jiang, Xuefeng,Zhang, Kun,et al. FedDSHAR: A dual-strategy federated learning approach for human activity recognition amid noise label user[J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,2025,166:11.
APA Lin, Ziqian,Jiang, Xuefeng,Zhang, Kun,Fan, Chongjun,&Liu, Yaya.(2025).FedDSHAR: A dual-strategy federated learning approach for human activity recognition amid noise label user.FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,166,11.
MLA Lin, Ziqian,et al."FedDSHAR: A dual-strategy federated learning approach for human activity recognition amid noise label user".FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 166(2025):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Ziqian]的文章
[Jiang, Xuefeng]的文章
[Zhang, Kun]的文章
百度学术
百度学术中相似的文章
[Lin, Ziqian]的文章
[Jiang, Xuefeng]的文章
[Zhang, Kun]的文章
必应学术
必应学术中相似的文章
[Lin, Ziqian]的文章
[Jiang, Xuefeng]的文章
[Zhang, Kun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。