CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Exploring Winograd Convolution for Cost-Effective Neural Network Fault Tolerance
Xue, Xinghua1,2; Liu, Cheng1,2; Liu, Bo3; Huang, Haitong1,2; Wang, Ying1,2; Luo, Tao4; Zhang, Lei1,2; Li, Huawei1,2; Li, Xiaowei1,2
2023-11-01
发表期刊IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS
ISSN1063-8210
卷号31期号:11页码:1763-1773
摘要Winograd is generally utilized to optimize convolution performance and computational efficiency because of the reduced multiplication operations, but the reliability issues brought by winograd are usually overlooked. In this work, we observe the great potential of winograd convolution (WG-Conv) in improving neural network (NN) fault tolerance. Based on the observation, we evaluate WG-Conv fault tolerance comprehensively from different granularities ranging from models, layers, and operation types for the first time. Then, we explore the use of inherent fault tolerance of WG-Conv for cost-effective NN protection against soft errors. Specifically, we mainly investigate how WG-Conv can be effectively incorporated with classical fault-tolerant design approaches including triple modular redundancy (TMR), fault-aware retraining, and constrained activation functions. According to our experiments, WG-Conv can reduce the fault-tolerant design overhead by 55.77% on average without any accuracy loss compared to standard convolution (ST-Conv), and further reduce the computing overhead by 17.24% when the inherent fault tolerance of WG-Conv is considered. When it is applied on fault-tolerant NNs enhanced with fault-aware retraining and constrained activation functions, the resulting model accuracy generally shows significant improvement in the presence of various faults.
关键词Fault tolerant systems Fault tolerance Artificial neural networks Convolution Reliability Computational modeling Neurons Fault-tolerance soft errors vulnerability analysis winograd convolution (WG-Conv)
DOI10.1109/TVLSI.2023.3306894
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62174162] ; Space Trusted Computing and Electronic Information Technology Laboratory of Beijing Institute of Control Engineering (BICE)[OBCandETL- 2022-07]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:001179765700002
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38821
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Cheng
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
3.Beijing Inst Control Engn, Beijing 100190, Peoples R China
4.ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
推荐引用方式
GB/T 7714
Xue, Xinghua,Liu, Cheng,Liu, Bo,et al. Exploring Winograd Convolution for Cost-Effective Neural Network Fault Tolerance[J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,2023,31(11):1763-1773.
APA Xue, Xinghua.,Liu, Cheng.,Liu, Bo.,Huang, Haitong.,Wang, Ying.,...&Li, Xiaowei.(2023).Exploring Winograd Convolution for Cost-Effective Neural Network Fault Tolerance.IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,31(11),1763-1773.
MLA Xue, Xinghua,et al."Exploring Winograd Convolution for Cost-Effective Neural Network Fault Tolerance".IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 31.11(2023):1763-1773.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xue, Xinghua]的文章
[Liu, Cheng]的文章
[Liu, Bo]的文章
百度学术
百度学术中相似的文章
[Xue, Xinghua]的文章
[Liu, Cheng]的文章
[Liu, Bo]的文章
必应学术
必应学术中相似的文章
[Xue, Xinghua]的文章
[Liu, Cheng]的文章
[Liu, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。