CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
HyCA: A Hybrid Computing Architecture for Fault-Tolerant Deep Learning
Liu, Cheng1; Chu, Cheng1,2; Xu, Dawen1,2; Wang, Ying1; Wang, Qianlong1,2; Li, Huawei1; Li, Xiaowei1; Cheng, Kwang-Ting3
2022-10-01
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
ISSN0278-0070
卷号41期号:10页码:3400-3413
摘要Hardware faults on the regular 2-D computing array of a typical deep learning accelerator (DLA) can lead to dramatic prediction accuracy loss. Prior redundancy design approaches typically have each homogeneous redundant processing element (PE) to mitigate faulty PEs for a limited region of the 2-D computing array rather than the entire computing array to avoid the excessive hardware overhead. However, they fail to recover the computing array when the number of faulty PEs in any region exceeds the number of redundant PEs in the same region. The mismatch problem deteriorates when the fault injection rate rises and the faults are unevenly distributed. To address the problem, we propose a hybrid computing architecture (HyCA) for fault-tolerant DLAs. It has a set of dot-production processing units (DPPUs) to recompute all the operations that are mapped to the faulty PEs despite the faulty PE locations. According to our experiments, HyCA shows significantly higher reliability, scalability, and performance with less chip area penalty when compared to the conventional redundancy approaches. Moreover, by taking advantage of the flexible recomputing, HyCA can also be utilized to scan the entire 2-D computing array and detect the faulty PEs effectively at runtime.
关键词Circuit faults Computational modeling Deep learning Hardware Redundancy Neural networks Computer architecture Deep learning accelerator (DLA) fault detection fault tolerance hybrid computing architecture (HyCA)
DOI10.1109/TCAD.2021.3124763
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2020YFB1600201] ; National Natural Science Foundation of China[62174162] ; National Natural Science Foundation of China[61902375] ; National Natural Science Foundation of China[61834006]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:000856129900022
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/19415
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Dawen
作者单位1.Chinese Acad Sci, Inst Comp Technol, SKLCA, Beijing 100080, Peoples R China
2.Hefei Univ Technol, Sch Microelect, Hefei 230009, Peoples R China
3.Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Liu, Cheng,Chu, Cheng,Xu, Dawen,et al. HyCA: A Hybrid Computing Architecture for Fault-Tolerant Deep Learning[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2022,41(10):3400-3413.
APA Liu, Cheng.,Chu, Cheng.,Xu, Dawen.,Wang, Ying.,Wang, Qianlong.,...&Cheng, Kwang-Ting.(2022).HyCA: A Hybrid Computing Architecture for Fault-Tolerant Deep Learning.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,41(10),3400-3413.
MLA Liu, Cheng,et al."HyCA: A Hybrid Computing Architecture for Fault-Tolerant Deep Learning".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 41.10(2022):3400-3413.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Cheng]的文章
[Chu, Cheng]的文章
[Xu, Dawen]的文章
百度学术
百度学术中相似的文章
[Liu, Cheng]的文章
[Chu, Cheng]的文章
[Xu, Dawen]的文章
必应学术
必应学术中相似的文章
[Liu, Cheng]的文章
[Chu, Cheng]的文章
[Xu, Dawen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。