CSpace

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Algorithm-Dependent Generalization of AUPRC Optimization: Theory and Algorithm 期刊论文
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 卷号: 46, 期号: 7, 页码: 5062-5079
作者:  Wen, Peisong;  Xu, Qianqian;  Yang, Zhiyong;  He, Yuan;  Huang, Qingming
收藏  |  浏览/下载:2/0  |  提交时间:2024/12/06
Optimization  Stability analysis  Stochastic processes  Measurement  Standards  Approximation algorithms  Machine learning algorithms  Machine learning  AUPRC  learning to rank  algorithm-dependent generalization  stability  
Positive-Unlabeled Learning With Label Distribution Alignment 期刊论文
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 卷号: 45, 期号: 12, 页码: 15345-15363
作者:  Jiang, Yangbangyan;  Xu, Qianqian;  Zhao, Yunrui;  Yang, Zhiyong;  Wen, Peisong;  Cao, Xiaochun;  Huang, Qingming
收藏  |  浏览/下载:13/0  |  提交时间:2024/05/20
Estimation  Stochastic processes  Optimization  Computer science  Predictive models  Information processing  Fasteners  Positive-unlabeled learning  weakly supervised learning  binary classification  
Why Dataset Properties Bound the Scalability of Parallel Machine Learning Training Algorithms 期刊论文
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 卷号: 32, 期号: 7, 页码: 1702-1712
作者:  Cheng, Daning;  Li, Shigang;  Zhang, Hanping;  Xia, Fen;  Zhang, Yunquan
收藏  |  浏览/下载:42/0  |  提交时间:2021/12/01
Training  Scalability  Machine learning  Machine learning algorithms  Stochastic processes  Task analysis  Upper bound  Parallel training algorithms  training dataset  scalability  stochastic optimization methods  
Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends 期刊论文
IEEE ACCESS, 2019, 卷号: 7, 页码: 156848-156859
作者:  Cui, Guoxin;  Guo, Jiafeng;  Fan, Yixing;  Lan, Yanyan;  Cheng, Xueqi
收藏  |  浏览/下载:42/0  |  提交时间:2020/12/10
Training  Market research  Acceleration  Convergence  Servers  Stochastic processes  Machine learning  Parameter trend  asynchronous SGD  accelerate training