CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends
Cui, Guoxin1,2; Guo, Jiafeng1; Fan, Yixing1; Lan, Yanyan1; Cheng, Xueqi1
2019
发表期刊IEEE ACCESS
ISSN2169-3536
卷号7页码:156848-156859
摘要Stochastic gradient descent(SGD) is the fundamental sequential method in training large scale machine learning models. To accelerate the training process, researchers proposed to use the asynchronous stochastic gradient descent (A-SGD) method in model learning. However, due to the stale information when updating parameters, A-SGD converges more slowly than SGD in the same iteration number. Moreover, A-SGD often converges to a high loss value and results in lower model accuracy. In this paper, we propose a novel algorithm called Trend-Smooth which can be adapted to the asynchronous parallel environment to overcome the above problems. Specifically, Trend-Smooth makes use of the parameter trend during the training process to shrink the learning rate of some dimensions where the gradients directions are opposite to the trends of parameters. Experiments on MNIST and CIFAR-10 datasets confirm that Trend-Smooth can accelerate the convergence speed in asynchronous training process. The test accuracy that Trend-Smooth achieves is shown to be higher than other asynchronous parallel baseline methods, and is very close to the SGD method. Moreover, Trend-Smooth can also be combined with other adaptive learning rate methods(like Momentum, RMSProp and Adam) in the asynchronous parallel environment to promote their performance.
关键词Training Market research Acceleration Convergence Servers Stochastic processes Machine learning Parameter trend asynchronous SGD accelerate training
DOI10.1109/ACCESS.2019.2949611
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[61425016] ; National Natural Science Foundation of China (NSFC)[61722211] ; National Natural Science Foundation of China (NSFC)[61773362] ; National Natural Science Foundation of China (NSFC)[61872338] ; Youth Innovation Promotion Association CAS[20144310] ; Youth Innovation Promotion Association CAS[2016102] ; National Key Research and Development Program of China[2016QY02D0405] ; Foundation and Frontier Research Key Program of Chongqing Science and Technology Commission[cstc2017jcyjBX0059]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000497165400120
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/14955
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cui, Guoxin; Guo, Jiafeng
作者单位1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Cui, Guoxin,Guo, Jiafeng,Fan, Yixing,et al. Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends[J]. IEEE ACCESS,2019,7:156848-156859.
APA Cui, Guoxin,Guo, Jiafeng,Fan, Yixing,Lan, Yanyan,&Cheng, Xueqi.(2019).Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends.IEEE ACCESS,7,156848-156859.
MLA Cui, Guoxin,et al."Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends".IEEE ACCESS 7(2019):156848-156859.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cui, Guoxin]的文章
[Guo, Jiafeng]的文章
[Fan, Yixing]的文章
百度学术
百度学术中相似的文章
[Cui, Guoxin]的文章
[Guo, Jiafeng]的文章
[Fan, Yixing]的文章
必应学术
必应学术中相似的文章
[Cui, Guoxin]的文章
[Guo, Jiafeng]的文章
[Fan, Yixing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。