Institute of Computing Technology, Chinese Academy IR
Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends | |
Cui, Guoxin1,2; Guo, Jiafeng1; Fan, Yixing1; Lan, Yanyan1; Cheng, Xueqi1 | |
2019 | |
发表期刊 | IEEE ACCESS |
ISSN | 2169-3536 |
卷号 | 7页码:156848-156859 |
摘要 | Stochastic gradient descent(SGD) is the fundamental sequential method in training large scale machine learning models. To accelerate the training process, researchers proposed to use the asynchronous stochastic gradient descent (A-SGD) method in model learning. However, due to the stale information when updating parameters, A-SGD converges more slowly than SGD in the same iteration number. Moreover, A-SGD often converges to a high loss value and results in lower model accuracy. In this paper, we propose a novel algorithm called Trend-Smooth which can be adapted to the asynchronous parallel environment to overcome the above problems. Specifically, Trend-Smooth makes use of the parameter trend during the training process to shrink the learning rate of some dimensions where the gradients directions are opposite to the trends of parameters. Experiments on MNIST and CIFAR-10 datasets confirm that Trend-Smooth can accelerate the convergence speed in asynchronous training process. The test accuracy that Trend-Smooth achieves is shown to be higher than other asynchronous parallel baseline methods, and is very close to the SGD method. Moreover, Trend-Smooth can also be combined with other adaptive learning rate methods(like Momentum, RMSProp and Adam) in the asynchronous parallel environment to promote their performance. |
关键词 | Training Market research Acceleration Convergence Servers Stochastic processes Machine learning Parameter trend asynchronous SGD accelerate training |
DOI | 10.1109/ACCESS.2019.2949611 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (NSFC)[61425016] ; National Natural Science Foundation of China (NSFC)[61722211] ; National Natural Science Foundation of China (NSFC)[61773362] ; National Natural Science Foundation of China (NSFC)[61872338] ; Youth Innovation Promotion Association CAS[20144310] ; Youth Innovation Promotion Association CAS[2016102] ; National Key Research and Development Program of China[2016QY02D0405] ; Foundation and Frontier Research Key Program of Chongqing Science and Technology Commission[cstc2017jcyjBX0059] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000497165400120 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/14955 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Cui, Guoxin; Guo, Jiafeng |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Cui, Guoxin,Guo, Jiafeng,Fan, Yixing,et al. Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends[J]. IEEE ACCESS,2019,7:156848-156859. |
APA | Cui, Guoxin,Guo, Jiafeng,Fan, Yixing,Lan, Yanyan,&Cheng, Xueqi.(2019).Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends.IEEE ACCESS,7,156848-156859. |
MLA | Cui, Guoxin,et al."Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends".IEEE ACCESS 7(2019):156848-156859. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论