CSpace

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Characterizing and Understanding HGNN Training on GPUs 期刊论文
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2025, 卷号: 22, 期号: 1, 页码: 25
作者:  Han, Dengke;  Yan, Mingyu;  Ye, Xiaochun;  Fan, Dongrui
收藏  |  浏览/下载:3/0  |  提交时间:2025/06/25
Heterogeneous graph neural networks  graph neural networks training  characterization  quantitative analysis  optimization guidelines  
HiHGNN: Accelerating HGNNs Through Parallelism and Data Reusability Exploitation 期刊论文
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 卷号: 35, 期号: 7, 页码: 1122-1138
作者:  Xue, Runzhen;  Han, Dengke;  Yan, Mingyu;  Zou, Mo;  Yang, Xiaocheng;  Wang, Duo;  Li, Wenming;  Tang, Zhimin;  Kim, John;  Ye, Xiaochun;  Fan, Dongrui
收藏  |  浏览/下载:22/0  |  提交时间:2024/12/06
Semantics  Parallel processing  Graph neural networks  Vectors  Graphics processing units  Fuses  Hardware  GNN  GNN accelerator  graph neural network  HGNN  HGNN accelerator  heterogeneous graph neural network  
Heterogeneous Graph Neural Network With Multi-View Representation Learning 期刊论文
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 卷号: 35, 期号: 11, 页码: 11476-11488
作者:  Shao, Zezhi;  Xu, Yongjun;  Wei, Wei;  Wang, Fei;  Zhang, Zhao;  Zhu, Feida
收藏  |  浏览/下载:29/0  |  提交时间:2024/05/20
Heterogeneous graphs  graph neural networks  graph embedding  
HIRE: Distilling high-order relational knowledge from heterogeneous graph neural networks 期刊论文
NEUROCOMPUTING, 2022, 卷号: 507, 页码: 67-83
作者:  Liu, Jing;  Zheng, Tongya;  Hao, Qinfen
收藏  |  浏览/下载:30/0  |  提交时间:2023/07/12
Graph embedding  Heterogeneous graph  Graph neural networks  Knowledge distillation  
Characterizing and Understanding HGNNs on GPUs 期刊论文
IEEE COMPUTER ARCHITECTURE LETTERS, 2022, 卷号: 21, 期号: 2, 页码: 69-72
作者:  Yan, Mingyu;  Zou, Mo;  Yang, Xiaocheng;  Li, Wenming;  Ye, Xiaochun;  Fan, Dongrui;  Xie, Yuan
收藏  |  浏览/下载:50/0  |  提交时间:2022/12/07
Kernel  Semantics  Aggregates  Mercury (metals)  Motion pictures  Graphics processing units  Electric breakdown  Heterogeneous graph neural networks  GNNs  characterization  execution semantic  execution pattern