CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Heterogeneous Graph Neural Network With Multi-View Representation Learning
Shao, Zezhi1,2; Xu, Yongjun1; Wei, Wei3; Wang, Fei1; Zhang, Zhao1; Zhu, Feida4
2023-11-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号35期号:11页码:11476-11488
摘要In recent years, graph neural networks (GNNs)-based methods have been widely adopted for heterogeneous graph (HG) embedding, due to their power in effectively encoding rich information from a HG into the low-dimensional node embeddings. However, previous works usually easily fail to fully leverage the inherent heterogeneity and rich semantics contained in the complex local structures of HGs. On the one hand, most of the existing methods either inadequately model the local structure under specific semantics, or neglect the heterogeneity when aggregating information from the local structure. On the other hand, representations from multiple semantics are not comprehensively integrated to obtain node embeddings with versatility. To address the problem, we propose a Heterogeneous Graph Neural Network for HG embedding within a Multi-View representation learning framework (named MV-HetGNN), which consists of a view-specific ego graph encoder and auto multi-view fusion layer. MV-HetGNN thoroughly learns complex heterogeneity and semantics in the local structure to generate comprehensive and versatile node representations for HGs. Extensive experiments on three real-world HG datasets demonstrate the significant superiority of our proposed MV-HetGNN compared to the state-of-the-art baselines in various downstream tasks, e.g., node classification, node clustering, and link prediction.
关键词Heterogeneous graphs graph neural networks graph embedding
DOI10.1109/TKDE.2022.3224193
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61902376] ; National Natural Science Foundation of China[61902382] ; National Natural Science Foundation of China[62276110] ; CCF-AFSG Research Fund[RF20210005] ; fund of Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL) ; China Post-doctoral Science Foundation[2021M703273]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:001089176900038
出版者IEEE COMPUTER SOC
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/38106
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wei, Wei; Wang, Fei
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Hubei, Peoples R China
4.Singapore Management Univ, Sch Informat Syst, Singapore 178902, Singapore
推荐引用方式
GB/T 7714
Shao, Zezhi,Xu, Yongjun,Wei, Wei,et al. Heterogeneous Graph Neural Network With Multi-View Representation Learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2023,35(11):11476-11488.
APA Shao, Zezhi,Xu, Yongjun,Wei, Wei,Wang, Fei,Zhang, Zhao,&Zhu, Feida.(2023).Heterogeneous Graph Neural Network With Multi-View Representation Learning.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,35(11),11476-11488.
MLA Shao, Zezhi,et al."Heterogeneous Graph Neural Network With Multi-View Representation Learning".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 35.11(2023):11476-11488.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao, Zezhi]的文章
[Xu, Yongjun]的文章
[Wei, Wei]的文章
百度学术
百度学术中相似的文章
[Shao, Zezhi]的文章
[Xu, Yongjun]的文章
[Wei, Wei]的文章
必应学术
必应学术中相似的文章
[Shao, Zezhi]的文章
[Xu, Yongjun]的文章
[Wei, Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。