CSpace

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Crypto-DSEDA: A Domain-Specific EDA Flow for CiM-Based Cryptographic Accelerators 期刊论文
IEEE DESIGN & TEST, 2024, 卷号: 41, 期号: 5, 页码: 46-54
作者:  Liu, Rui;  Li, Zerun;  Zhang, Xiaoyu;  Li, Wanqian;  Shen, Libo;  Tang, Rui;  Luo, Zhejian;  Chen, Xiaoming;  Han, Yinhe;  Tang, Minghua
收藏  |  浏览/下载:1/0  |  提交时间:2024/12/06
Computer architecture  Cryptography  Optimization  Table lookup  Hardware acceleration  Resource management  Space exploration  Computing-in-memory  electronic design automation  cryptographic algorithm  automatic generation  
MoDSE: A High-Accurate Multiobjective Design Space Exploration Framework for CPU Microarchitectures 期刊论文
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 卷号: 43, 期号: 5, 页码: 1525-1537
作者:  Wang, Duo;  Yan, Mingyu;  Teng, Yihan;  Han, Dengke;  Liu, Xin;  Li, Wenming;  Ye, Xiaochun;  Fan, Dongrui
收藏  |  浏览/下载:3/0  |  提交时间:2024/12/06
Pareto optimization  Predictive models  Measurement  Space exploration  Prediction algorithms  Central Processing Unit  Microarchitecture  CPU microarchitecture  design space exploration (DSE)  multiobjective exploration  Pareto hypervolume  prediction model  
Amphis: Managing Reconfigurable Processor Architectures With Generative Adversarial Learning 期刊论文
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 卷号: 41, 期号: 11, 页码: 3993-4003
作者:  Chen, Weiwei;  Wang, Ying;  Xu, Ying;  Gao, Chengsi;  Han, Yinhe;  Zhang, Lei
收藏  |  浏览/下载:21/0  |  提交时间:2023/07/12
Resource management  Predictive models  Runtime  Generators  Generative adversarial networks  Computational modeling  Training  Design space exploration  generative adversarial network (GAN)  reconfigurable processor  
Processor Design Space Exploration via Statistical Sampling and Semi-Supervised Ensemble Learning 期刊论文
IEEE ACCESS, 2018, 卷号: 6, 页码: 25495-25505
作者:  Li, Dandan;  Yao, Shuzhen;  Wang, Ying
收藏  |  浏览/下载:53/0  |  提交时间:2019/12/10
Design space exploration  Latin hypercube sampling  adaboost  microprocessor design