CSpace

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images 期刊论文
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 卷号: 42, 期号: 6, 页码: 1875-1884
作者:  Hu, Xiaoyan;  Zhang, Ling-Xiao;  Gao, Lin;  Dai, Weiwei;  Han, Xiaoguang;  Lai, Yu-Kun;  Chen, Yiqiang
收藏  |  浏览/下载:14/0  |  提交时间:2023/12/04
Transformers  Feature extraction  Predictive models  Image segmentation  Deep learning  Biomedical imaging  Task analysis  Glaucoma forecast  transformer  attention mechanism  fundus image  
LE-UDA: Label-Efficient Unsupervised Domain Adaptation for Medical Image Segmentation 期刊论文
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 卷号: 42, 期号: 3, 页码: 633-646
作者:  Zhao, Ziyuan;  Zhou, Fangcheng;  Xu, Kaixin;  Zeng, Zeng;  Guan, Cuntai;  Zhou, S. Kevin
收藏  |  浏览/下载:14/0  |  提交时间:2023/12/04
Image segmentation  Adaptation models  Biomedical imaging  Annotations  Adversarial machine learning  Magnetic resonance imaging  Training  Unsupervised domain adaptation  medical image segmentation  cross-modality learning  semi-supervised learning  adversarial learning  
All-Around Real Label Supervision: Cyclic Prototype Consistency Learning for Semi-Supervised Medical Image Segmentation 期刊论文
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 卷号: 26, 期号: 7, 页码: 3174-3184
作者:  Xu, Zhe;  Wang, Yixin;  Lu, Donghuan;  Yu, Lequan;  Yan, Jiangpeng;  Luo, Jie;  Ma, Kai;  Zheng, Yefeng;  Tong, Raymond Kai-yu
收藏  |  浏览/下载:28/0  |  提交时间:2022/12/07
Image segmentation  Prototypes  Biomedical imaging  Perturbation methods  Reliability  Feature extraction  Training  Medical image segmentation  prototype learning  semi-supervised learning  
Automated and precise event detection method for big data in biomedical imaging with support vector machine 期刊论文
COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2018, 卷号: 33, 期号: 2, 页码: 105-114
作者:  Yuan, Lufeng;  Yao, Erlin;  Tan, Guangming
收藏  |  浏览/下载:54/0  |  提交时间:2019/04/03
Biomedical imaging  event detection  machine learning  support vector machine  big data