CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
LECLIP: Boosting Zero-Shot Anomaly Detection With Local Enhanced CLIP
Liu, Yuyao1; Li, Qingyong2; Wang, Zhehong1; Kato, Jien3; Zhang, Jie4; Wang, Wen1
2025
发表期刊IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
ISSN0018-9456
卷号74页码:11
摘要Zero-shot anomaly detection (ZSAD) is a critical task that detects anomalies without any training samples from the target application, which is crucial for applications in diverse fields such as industrial quality control and medical imaging analysis. Recent advances have seen the application of contrastive language-image pretraining (CLIP) in ZSAD, exploiting its robust visual-linguistic alignment and zero-shot learning capabilities. However, CLIP is primarily designed for natural image classification, emphasizing global visual embeddings, while anomaly detection (AD) requires a more accurate representation of anomalous regions and more precise local visual embeddings. To overcome these limitations, this article proposes the local enhanced CLIP (LECLIP) framework for ZSAD. LECLIP incorporates a local alignment (LA) module that divides images into blocks and aligns them with learnable text embeddings, ensuring precise relevance expression. Furthermore, a training-free echo-attention (EA) is proposed to complement the traditional QKV attention, enabling the model to capture both global and local image details effectively, thus providing a more accurate and detailed image representation. Experimental results show that LECLIP achieves superior performance on 15 challenging datasets, including six industrial datasets and nine medical datasets. Code is available at https://github.com/lyy70/LECLIP
关键词Visualization Anomaly detection Training Accuracy Image representation Feature extraction Biomedical imaging Semantics Attention mechanisms Artificial intelligence Echo-attention (EA) local alignment (LA) module local enhanced CLIP (LECLIP) zero-shot anomaly detection (ZSAD)
DOI10.1109/TIM.2025.3571124
收录类别SCI
语种英语
资助项目Fundamental Research Funds for the Central Universities[2024QYBS026] ; Fundamental Research Funds for the Central Universities[2023JBZY037] ; Fundamental Research Funds for the Central Universities[2022JBMC055] ; Fundamental Research Funds for the Central Universities[2022JBQY007] ; Beijing Natural Science Foundation[L231019] ; National Natural Science Foundation of China[62276019] ; National Natural Science Foundation of China[62306028] ; Langfang Research and Development Projects[2023011003B] ; Shenzhen Science and Technology Program Project[KJZD20240903102742055]
WOS研究方向Engineering ; Instruments & Instrumentation
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:001504194800024
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42348
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Wen
作者单位1.Beijing Jiaotong Univ, Key Lab Big Data & Artificial Intelligence Transpo, Minist Educ, Beijing 100044, Peoples R China
2.Beijing Jiaotong Univ, Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China
3.Kochi Univ Technol, Sch Data & Innovat, Kochi 7828502, Japan
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yuyao,Li, Qingyong,Wang, Zhehong,et al. LECLIP: Boosting Zero-Shot Anomaly Detection With Local Enhanced CLIP[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2025,74:11.
APA Liu, Yuyao,Li, Qingyong,Wang, Zhehong,Kato, Jien,Zhang, Jie,&Wang, Wen.(2025).LECLIP: Boosting Zero-Shot Anomaly Detection With Local Enhanced CLIP.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,74,11.
MLA Liu, Yuyao,et al."LECLIP: Boosting Zero-Shot Anomaly Detection With Local Enhanced CLIP".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 74(2025):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yuyao]的文章
[Li, Qingyong]的文章
[Wang, Zhehong]的文章
百度学术
百度学术中相似的文章
[Liu, Yuyao]的文章
[Li, Qingyong]的文章
[Wang, Zhehong]的文章
必应学术
必应学术中相似的文章
[Liu, Yuyao]的文章
[Li, Qingyong]的文章
[Wang, Zhehong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。