Institute of Computing Technology, Chinese Academy IR
| LECLIP: Boosting Zero-Shot Anomaly Detection With Local Enhanced CLIP | |
| Liu, Yuyao1; Li, Qingyong2; Wang, Zhehong1; Kato, Jien3; Zhang, Jie4; Wang, Wen1 | |
| 2025 | |
| 发表期刊 | IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
![]() |
| ISSN | 0018-9456 |
| 卷号 | 74页码:11 |
| 摘要 | Zero-shot anomaly detection (ZSAD) is a critical task that detects anomalies without any training samples from the target application, which is crucial for applications in diverse fields such as industrial quality control and medical imaging analysis. Recent advances have seen the application of contrastive language-image pretraining (CLIP) in ZSAD, exploiting its robust visual-linguistic alignment and zero-shot learning capabilities. However, CLIP is primarily designed for natural image classification, emphasizing global visual embeddings, while anomaly detection (AD) requires a more accurate representation of anomalous regions and more precise local visual embeddings. To overcome these limitations, this article proposes the local enhanced CLIP (LECLIP) framework for ZSAD. LECLIP incorporates a local alignment (LA) module that divides images into blocks and aligns them with learnable text embeddings, ensuring precise relevance expression. Furthermore, a training-free echo-attention (EA) is proposed to complement the traditional QKV attention, enabling the model to capture both global and local image details effectively, thus providing a more accurate and detailed image representation. Experimental results show that LECLIP achieves superior performance on 15 challenging datasets, including six industrial datasets and nine medical datasets. Code is available at https://github.com/lyy70/LECLIP |
| 关键词 | Visualization Anomaly detection Training Accuracy Image representation Feature extraction Biomedical imaging Semantics Attention mechanisms Artificial intelligence Echo-attention (EA) local alignment (LA) module local enhanced CLIP (LECLIP) zero-shot anomaly detection (ZSAD) |
| DOI | 10.1109/TIM.2025.3571124 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | Fundamental Research Funds for the Central Universities[2024QYBS026] ; Fundamental Research Funds for the Central Universities[2023JBZY037] ; Fundamental Research Funds for the Central Universities[2022JBMC055] ; Fundamental Research Funds for the Central Universities[2022JBQY007] ; Beijing Natural Science Foundation[L231019] ; National Natural Science Foundation of China[62276019] ; National Natural Science Foundation of China[62306028] ; Langfang Research and Development Projects[2023011003B] ; Shenzhen Science and Technology Program Project[KJZD20240903102742055] |
| WOS研究方向 | Engineering ; Instruments & Instrumentation |
| WOS类目 | Engineering, Electrical & Electronic ; Instruments & Instrumentation |
| WOS记录号 | WOS:001504194800024 |
| 出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/42348 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Wang, Wen |
| 作者单位 | 1.Beijing Jiaotong Univ, Key Lab Big Data & Artificial Intelligence Transpo, Minist Educ, Beijing 100044, Peoples R China 2.Beijing Jiaotong Univ, Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China 3.Kochi Univ Technol, Sch Data & Innovat, Kochi 7828502, Japan 4.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China |
| 推荐引用方式 GB/T 7714 | Liu, Yuyao,Li, Qingyong,Wang, Zhehong,et al. LECLIP: Boosting Zero-Shot Anomaly Detection With Local Enhanced CLIP[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2025,74:11. |
| APA | Liu, Yuyao,Li, Qingyong,Wang, Zhehong,Kato, Jien,Zhang, Jie,&Wang, Wen.(2025).LECLIP: Boosting Zero-Shot Anomaly Detection With Local Enhanced CLIP.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,74,11. |
| MLA | Liu, Yuyao,et al."LECLIP: Boosting Zero-Shot Anomaly Detection With Local Enhanced CLIP".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 74(2025):11. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论