CSpace

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials 期刊论文
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025, 卷号: 21, 期号: 9, 页码: 4375-4385
作者:  Zeng, Jinzhe;  Zhang, Duo;  Peng, Anyang;  Zhang, Xiangyu;  He, Sensen;  Wang, Yan;  Liu, Xinzijian;  Bi, Hangrui;  Li, Yifan;  Cai, Chun;  Zhang, Chengqian;  Du, Yiming;  Zhu, Jia-Xin;  Mo, Pinghui;  Huang, Zhengtao;  Zeng, Qiyu;  Shi, Shaochen;  Qin, Xuejian;  Yu, Zhaoxi;  Luo, Chenxing;  Ding, Ye;  Liu, Yun-Pei;  Shi, Ruosong;  Wang, Zhenyu;  Bore, Sigbjorn Loland;  Chang, Junhan;  Deng, Zhe;  Ding, Zhaohan;  Han, Siyuan;  Jiang, Wanrun;  Ke, Guolin;  Liu, Zhaoqing;  Lu, Denghui;  Muraoka, Koki;  Oliaei, Hananeh;  Singh, Anurag Kumar;  Que, Haohui;  Xu, Weihong;  Xu, Zhangmancang;  Zhuang, Yong-Bin;  Dai, Jiayu;  Giese, Timothy J.;  Jia, Weile;  Xu, Ben;  York, Darrin M.;  Zhang, Linfeng;  Wang, Han
收藏  |  浏览/下载:1/0  |  提交时间:2025/06/25
29-Billion Atoms Molecular Dynamics Simulation With Ab Initio Accuracy on 35 Million Cores of New Sunway Supercomputer 期刊论文
IEEE TRANSACTIONS ON COMPUTERS, 2025, 卷号: 74, 期号: 5, 页码: 1634-1648
作者:  Wang, Xun;  Meng, Xiangyu;  Guo, Zhuoqiang;  Li, Mingzhen;  Liu, Lijun;  Li, Mingfan;  Xiao, Qian;  Zhao, Tong;  Sun, Ninghui;  Tan, Guangming;  Jia, Weile
收藏  |  浏览/下载:1/0  |  提交时间:2025/06/25
Atoms  Accuracy  Supercomputers  Optimization  Artificial neural networks  Force  Training  Fitting  Predictive models  Nuclear power generation  High Performance Computing  Molecular Dynamics  DeePMD  Parallel Optimization  New Sunway Supercomputer  
10-Million Atoms Simulation of First-Principle Package LS3DF 期刊论文
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2024, 卷号: 39, 期号: 1, 页码: 45-62
作者:  Yan, Yu-Jin;  Li, Hai-Bo;  Zhao, Tong;  Wang, Lin-Wang;  Shi, Lin;  Liu, Tao;  Tan, Guang-Ming;  Jia, Wei-Le;  Sun, Ning-Hui
收藏  |  浏览/下载:16/0  |  提交时间:2024/12/06
single instruction multiple thread accelerator  electronic structure  high-performance computing  linearly scaling three-dimensional fragment (LS3DF)