CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
Zeng, Jinzhe1,2,3,4; Zhang, Duo5,6,7; Peng, Anyang5; Zhang, Xiangyu8,9; He, Sensen10; Wang, Yan8,9; Liu, Xinzijian6; Bi, Hangrui11; Li, Yifan12; Cai, Chun5; Zhang, Chengqian7; Du, Yiming8,9; Zhu, Jia-Xin13; Mo, Pinghui14; Huang, Zhengtao15; Zeng, Qiyu16,17; Shi, Shaochen18; Qin, Xuejian19,20; Yu, Zhaoxi21; Luo, Chenxing22,23; Ding, Ye6; Liu, Yun-Pei24; Shi, Ruosong25; Wang, Zhenyu26,27; Bore, Sigbjorn Loland28,29; Chang, Junhan6,30; Deng, Zhe30; Ding, Zhaohan6; Han, Siyuan31; Jiang, Wanrun5; Ke, Guolin6; Liu, Zhaoqing30; Lu, Denghui32,33; Muraoka, Koki34; Oliaei, Hananeh35; Singh, Anurag Kumar36; Que, Haohui37; Xu, Weihong24; Xu, Zhangmancang38; Zhuang, Yong-Bin39; Dai, Jiayu16,17; Giese, Timothy J.40,41; Jia, Weile8; Xu, Ben42; York, Darrin M.40,41; Zhang, Linfeng5,6; Wang, Han43,44
2025-05-02
发表期刊JOURNAL OF CHEMICAL THEORY AND COMPUTATION
ISSN1549-9618
卷号21期号:9页码:4375-4385
摘要In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations and related applications. These packages, typically built on specific machine learning frameworks, such as TensorFlow, PyTorch, or JAX, face integration challenges when advanced applications demand communication across different frameworks. The previous TensorFlow-based implementation of the DeePMD-kit exemplified these limitations. In this work, we introduce DeePMD-kit version 3, a significant update featuring a multibackend framework that supports TensorFlow, PyTorch, JAX, and PaddlePaddle backends, and demonstrate the versatility of this architecture through the integration of other MLP packages and of differentiable molecular force fields. This architecture allows seamless back-end switching with minimal modifications, enabling users and developers to integrate DeePMD-kit with other packages using different machine learning frameworks. This innovation facilitates the development of more complex and interoperable workflows, paving the way for broader applications of MLPs in scientific research.
DOI10.1021/acs.jctc.5c00340
收录类别SCI
语种英语
资助项目Fundation the Science and Technology Innovation Program of Hunan Province[2021RC4026] ; Research Council of Norway through the Centre of Excellence Hylleraas Centre for Quantum Molecular Sciences[262695] ; Young Researcher Talent[344993] ; EuroHPC Joint Undertaking[EHPC-REG-2023R02-088] ; Natural Science Foundation of China[92270206] ; Natural Science Foundation of China[12122103] ; National Institutes of Health[GM107485] ; National Science Foundation[2209718] ; National Key R&D Program of China[2022YFA1004300]
WOS研究方向Chemistry ; Physics
WOS类目Chemistry, Physical ; Physics, Atomic, Molecular & Chemical
WOS记录号WOS:001481066700001
出版者AMER CHEMICAL SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40643
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zeng, Jinzhe; Zhang, Linfeng; Wang, Han
作者单位1.Univ Sci & Technol China, Sch Artificial Intelligence & Data Sci, Hefei 230026, Peoples R China
2.Univ Sci & Technol China, Suzhou Inst Adv Res, Suzhou 215123, Peoples R China
3.Suzhou Big Data, Suzhou 215123, Peoples R China
4.AI Res & Engn Ctr, Suzhou 215123, Peoples R China
5.AI Sci Inst, Beijing 100080, Peoples R China
6.DP Technol, Beijing 100080, Peoples R China
7.Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
8.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100871, Peoples R China
9.Univ Chinese Acad Sci, Beijing 100871, Peoples R China
10.Baidu Inc, Beijing 100085, Peoples R China
11.Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
12.Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
13.Xiamen Univ, Coll Chem & Chem Engn, IChEM, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
14.Hunan Univ, Coll Integrated Circuits, Changsha 410082, Peoples R China
15.Wuhan Univ Technol, Sch Mat Sci & Engn, Ctr Smart Mat & Device Integrat, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
16.Natl Univ Def Technol, Coll Sci, Changsha 410073, Peoples R China
17.Natl Univ Def Technol, Hunan Key Lab Extreme Matter & Applicat, Changsha 410073, Peoples R China
18.ByteDance Res, Beijing 100098, Peoples R China
19.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
20.Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
21.Beijing Normal Univ, Coll Chem, Minist Educ, Key Lab Theoret & Comp Photochem, Beijing 100875, Peoples R China
22.Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
23.Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
24.IKKEM, Lab AI Electrochem AI4EC, Xiamen 361005, Fujian, Peoples R China
25.China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
26.Jilin Univ, Coll Phys, Minist Educ, Key Lab Mat Simulat Methods & Software, Changchun 130012, Peoples R China
27.Jilin Univ, Int Ctr Future Sci, Changchun 130012, Peoples R China
28.Univ Oslo, Dept Chem, N-0315 Oslo, Norway
29.Univ Oslo, Hylleraas Ctr Quantum Mol Sci, N-0315 Oslo, Norway
30.Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
31.Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
32.Peking Univ, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
33.Peking Univ, Coll Engn, HEDPS & CAPT, Beijing 100871, Peoples R China
34.Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
35.Univ Illinois Urbana & Champaign, Dept Mech Sci & Engn, Urbana, IL 61801 USA
36.Indian Inst Technol Palakkad, Data Sci Dept, Palakkad 678623, Kerala, India
37.Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
38.Wuhan Univ Technol, Int Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
39.Ecole Polytech Fed Lausanne, CSEA, CH-1015 Lausanne, Switzerland
40.Rutgers State Univ, Inst Quantitat Biomed, Lab Biomol Simulat Res, Piscataway, NJ 08854 USA
41.Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
42.China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
43.Natl Key Lab Comp Phys, Inst Appl Phys & Comp Math, Beijing 100094, Peoples R China
44.Peking Univ, Coll Engn, HEDPS, CAPT, Beijing 100871, Peoples R China
推荐引用方式
GB/T 7714
Zeng, Jinzhe,Zhang, Duo,Peng, Anyang,et al. DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials[J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2025,21(9):4375-4385.
APA Zeng, Jinzhe.,Zhang, Duo.,Peng, Anyang.,Zhang, Xiangyu.,He, Sensen.,...&Wang, Han.(2025).DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials.JOURNAL OF CHEMICAL THEORY AND COMPUTATION,21(9),4375-4385.
MLA Zeng, Jinzhe,et al."DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials".JOURNAL OF CHEMICAL THEORY AND COMPUTATION 21.9(2025):4375-4385.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, Jinzhe]的文章
[Zhang, Duo]的文章
[Peng, Anyang]的文章
百度学术
百度学术中相似的文章
[Zeng, Jinzhe]的文章
[Zhang, Duo]的文章
[Peng, Anyang]的文章
必应学术
必应学术中相似的文章
[Zeng, Jinzhe]的文章
[Zhang, Duo]的文章
[Peng, Anyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。