CSpace

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Semantic Models for the First-Stage Retrieval: A Comprehensive Review 期刊论文
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2022, 卷号: 40, 期号: 4, 页码: 42
作者:  Guo, Jiafeng;  Cai, Yinqiong;  Fan, Yixing;  Sun, Fei;  Zhang, Ruqing;  Cheng, Xueqi
收藏  |  浏览/下载:25/0  |  提交时间:2022/12/07
Semantic retrieval models  information retrieval  survey  
A Review on Question Generation from Natural Language Text 期刊论文
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2022, 卷号: 40, 期号: 1, 页码: 43
作者:  Zhang, Ruqing;  Guo, Jiafeng;  Chen, Lu;  Fan, Yixing;  Cheng, Xueqi
收藏  |  浏览/下载:24/0  |  提交时间:2022/12/07
Question generation  natural language generation  survey  
GL-GCN: Global and Local Dependency Guided Graph Convolutional Networks for aspect-based sentiment classification 期刊论文
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 卷号: 186, 页码: 11
作者:  Zhu, Xiaofei;  Zhu, Ling;  Guo, Jiafeng;  Liang, Shangsong;  Dietze, Stefan
收藏  |  浏览/下载:58/0  |  提交时间:2021/12/01
Graph convolutional networks  Aspect-based sentiment classification  Attention mechanism  Sentiment analysis  
Exploring user historical semantic and sentiment preference for microblog sentiment classification 期刊论文
NEUROCOMPUTING, 2021, 卷号: 464, 页码: 141-150
作者:  Zhu, Xiaofei;  Wua, Jie;  Zhu, Ling;  Guo, Jiafeng;  Yu, Ran;  Boland, Katarina;  Dietze, Stefan
收藏  |  浏览/下载:45/0  |  提交时间:2021/12/01
Microblog analysis  Sentiment classification  User historical preference  
Exploring Implicit and Explicit Geometrical Structure of Data for Deep Embedded Clustering 期刊论文
NEURAL PROCESSING LETTERS, 2020, 页码: 16
作者:  Zhu, Xiaofei;  Do, Khoi Duy;  Guo, Jiafeng;  Xu, Jun;  Dietze, Stefan
收藏  |  浏览/下载:59/0  |  提交时间:2020/12/10
Deep neural networks  Stacked autoencoder  Manifold constraint  Clustering  
Dual-factor Generation Model for Conversation 期刊论文
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 卷号: 38, 期号: 3, 页码: 31
作者:  Zhang, Ruqing;  Guo, Jiafeng;  Fan, Yixing;  Lan, Yanyan;  Cheng, Xueqi
收藏  |  浏览/下载:34/0  |  提交时间:2021/12/01
Conversation  dual-factor generation  responder state modeling