CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Exploring Implicit and Explicit Geometrical Structure of Data for Deep Embedded Clustering
Zhu, Xiaofei1; Do, Khoi Duy2; Guo, Jiafeng3; Xu, Jun4; Dietze, Stefan5
2020-10-19
发表期刊NEURAL PROCESSING LETTERS
ISSN1370-4621
页码16
摘要Clustering is an essential data analysis technique and has been studied extensively over the last decades. Previous studies have shown that data representation and data structure information are two critical factors for improving clustering performance, and it forms two important lines of research. The first line of research attempts to learn representative features, especially utilizing the deep neural networks, for handling clustering problems. The second concerns exploiting the geometric structure information within data for clustering. Although both of them have achieved promising performance in lots of clustering tasks, few efforts have been dedicated to combine them in a unified deep clustering framework, which is the research gap we aim to bridge in this work. In this paper, we propose a novel approach, Manifold regularized Deep Embedded Clustering (MDEC), to deal with the aforementioned challenge. It simultaneously models data generating distribution, cluster assignment consistency, as well as geometric structure of data in a unified framework. The proposed method can be optimized by performing mini-batch stochastic gradient descent and back-propagation. We evaluate MDEC on three real-world datasets (USPS, REUTERS-10K, and MNIST), where experimental results demonstrate that our model outperforms baseline models and obtains the state-of-the-art performance.
关键词Deep neural networks Stacked autoencoder Manifold constraint Clustering
DOI10.1007/s11063-020-10375-9
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61722211] ; Federal Ministry of Education and Research[01LE1806A] ; Natural Science Foundation of Chongqing[cstc2017jcyjBX0059] ; Beijing Academy of Artificial Intelligence[BAAI2019ZD0306]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000579720300001
出版者SPRINGER
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/15748
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhu, Xiaofei
作者单位1.Chongqing Univ Technol, Coll Comp Sci & Engn, Chongqing 400054, Peoples R China
2.Leibniz Univ Hannover, Res Ctr L3S, D-30167 Hannover, Germany
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
5.Leibniz Inst Social Sci, Knowledge Technol Social Sci, D-50667 Cologne, Germany
推荐引用方式
GB/T 7714
Zhu, Xiaofei,Do, Khoi Duy,Guo, Jiafeng,et al. Exploring Implicit and Explicit Geometrical Structure of Data for Deep Embedded Clustering[J]. NEURAL PROCESSING LETTERS,2020:16.
APA Zhu, Xiaofei,Do, Khoi Duy,Guo, Jiafeng,Xu, Jun,&Dietze, Stefan.(2020).Exploring Implicit and Explicit Geometrical Structure of Data for Deep Embedded Clustering.NEURAL PROCESSING LETTERS,16.
MLA Zhu, Xiaofei,et al."Exploring Implicit and Explicit Geometrical Structure of Data for Deep Embedded Clustering".NEURAL PROCESSING LETTERS (2020):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Xiaofei]的文章
[Do, Khoi Duy]的文章
[Guo, Jiafeng]的文章
百度学术
百度学术中相似的文章
[Zhu, Xiaofei]的文章
[Do, Khoi Duy]的文章
[Guo, Jiafeng]的文章
必应学术
必应学术中相似的文章
[Zhu, Xiaofei]的文章
[Do, Khoi Duy]的文章
[Guo, Jiafeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。