CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Rough set based image texture recognition algorithm
Zheng, Z; Hu, H; Shi, ZZ
2004
发表期刊KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS
ISSN0302-9743
卷号3213页码:772-778
摘要Rough set theory is emerging as a new tool for dealing with fuzzy and uncertain data. In recent years, it has been successfully applied in such fields as machine learning, data mining, knowledge acquiring, etc. In this paper, rough set theory is applied to image texture recognition. Based on rough set and generalized approximate space, we develop a rough set based image texture recognition algorithm. We compare it with some other algorithms and the results show that our algorithm is effective and efficient.
关键词rough set approximate space image texture
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000224585300105
出版者SPRINGER-VERLAG BERLIN
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/9850
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zheng, Z
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
2.Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Z,Hu, H,Shi, ZZ. Rough set based image texture recognition algorithm[J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS,2004,3213:772-778.
APA Zheng, Z,Hu, H,&Shi, ZZ.(2004).Rough set based image texture recognition algorithm.KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS,3213,772-778.
MLA Zheng, Z,et al."Rough set based image texture recognition algorithm".KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS 3213(2004):772-778.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Z]的文章
[Hu, H]的文章
[Shi, ZZ]的文章
百度学术
百度学术中相似的文章
[Zheng, Z]的文章
[Hu, H]的文章
[Shi, ZZ]的文章
必应学术
必应学术中相似的文章
[Zheng, Z]的文章
[Hu, H]的文章
[Shi, ZZ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。