CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Self-Tuning p-Spectral Clustering Based on Shared Nearest Neighbors
Jia, Hongjie1,2; Ding, Shifei1,2; Du, Mingjing1,2
2015-10-01
发表期刊COGNITIVE COMPUTATION
ISSN1866-9956
卷号7期号:5页码:622-632
摘要Cognitive computing needs to handle large amounts of data and information. Spectral clustering is a powerful data mining tool based on algebraic graph theory. Because of the solid theoretical foundation and good clustering performance, spectral clustering has aroused extensive attention of academia in recent years. Spectral clustering transforms the data clustering problem into the graph partitioning problem. Cheeger cut is an optimized graph partitioning criterion. To minimize the objective function of Cheeger cut, the eigen-decomposition of p-Laplacian matrix is required. However, the clustering results are sensitive to the selection of similarity measurement and the parameter p of p-Laplacian matrix. Therefore, we propose a self-tuning p-spectral clustering algorithm based on shared nearest neighbors (SNN-PSC). This algorithm uses shared nearest neighbors to measure the similarities of data couples and then applies fruit fly optimization algorithm to find the optimal parameters p of p-Laplacian matrix that leads to better data classification. Experiments show that SNN-PSC algorithm can produce more balanced clusters and has strong adaptability and robustness compared to traditional spectral clustering algorithms.
关键词Spectral clustering Cheeger cut p-Laplacian SNN FOA
DOI10.1007/s12559-015-9331-2
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61379101] ; National Key Basic Research Program of China[2013CB329502]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000360995300010
出版者SPRINGER
引用统计
被引频次:26[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/9380
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ding, Shifei
作者单位1.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Jia, Hongjie,Ding, Shifei,Du, Mingjing. Self-Tuning p-Spectral Clustering Based on Shared Nearest Neighbors[J]. COGNITIVE COMPUTATION,2015,7(5):622-632.
APA Jia, Hongjie,Ding, Shifei,&Du, Mingjing.(2015).Self-Tuning p-Spectral Clustering Based on Shared Nearest Neighbors.COGNITIVE COMPUTATION,7(5),622-632.
MLA Jia, Hongjie,et al."Self-Tuning p-Spectral Clustering Based on Shared Nearest Neighbors".COGNITIVE COMPUTATION 7.5(2015):622-632.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jia, Hongjie]的文章
[Ding, Shifei]的文章
[Du, Mingjing]的文章
百度学术
百度学术中相似的文章
[Jia, Hongjie]的文章
[Ding, Shifei]的文章
[Du, Mingjing]的文章
必应学术
必应学术中相似的文章
[Jia, Hongjie]的文章
[Ding, Shifei]的文章
[Du, Mingjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。