CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Topic discovery of clusters from documents with geographical location
Zhang, Li1,4; Sun, Xiaoping1,3; Hai Zhuge1,2
2015-10-01
发表期刊CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
ISSN1532-0626
卷号27期号:15页码:4015-4038
摘要As smart phones with GPS become popular, more and more textual documents with geographical locations are published on the Web. Keyword-based location services like vehicle navigation, tour planning, nearby object querying, and location pattern discovering of spatial objects are becoming popular and important. However, processing both text and geographical locations brings more challenges to information-retrieval techniques. In this paper, we focus on the problem of finding textual topics of clusters containing spatial objects with text descriptions. The key is how to combine clustering techniques with topic-retrieval models to integrate both geo-location information and text information. We investigated methods that combine clustering methods with the Latent Dirichlet Allocation model to discover topics of clusters of documents with geo-locations. Six different methods of combination are investigated, each having outputs with different meanings, which can be further leveraged to answer different types of queries over spatial documents. Experiments are conducted on both synthetic and real data. The results show that the combination of the probabilistic topic model with clustering algorithms is an efficient and effective way to discover meaningful clusters in different facets and levels of documents with textual and geographical information. Copyright (C) 2015 John Wiley & Sons, Ltd.
关键词topic model clustering textual document geographical location
DOI10.1002/cpe.3474
收录类别SCI
语种英语
资助项目National Science Foundation of China[61075074] ; National Science Foundation of China[61070183] ; Open Fund Project of State Key Laboratory of Software Engineering (Wuhan University, China)[SKLSE2012-09-2]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:000363042100014
出版者WILEY-BLACKWELL
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/9211
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Sun, Xiaoping
作者单位1.Chinese Acad Sci, Inst Comp Technol, Knowledge Grid Lab, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
2.Nanjing Univ Posts & Telecommun, Nanjing, Jiangsu, Peoples R China
3.Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Hubei, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Li,Sun, Xiaoping,Hai Zhuge. Topic discovery of clusters from documents with geographical location[J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE,2015,27(15):4015-4038.
APA Zhang, Li,Sun, Xiaoping,&Hai Zhuge.(2015).Topic discovery of clusters from documents with geographical location.CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE,27(15),4015-4038.
MLA Zhang, Li,et al."Topic discovery of clusters from documents with geographical location".CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE 27.15(2015):4015-4038.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Li]的文章
[Sun, Xiaoping]的文章
[Hai Zhuge]的文章
百度学术
百度学术中相似的文章
[Zhang, Li]的文章
[Sun, Xiaoping]的文章
[Hai Zhuge]的文章
必应学术
必应学术中相似的文章
[Zhang, Li]的文章
[Sun, Xiaoping]的文章
[Hai Zhuge]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。