CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification
Pang, Junbiao1; Qin, Lei2; Zhang, Chunjie3; Zhang, Weigang4; Huang, Qingming5,6,7; Yin, Baocai1
2015-12-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号45期号:12页码:2937-2947
摘要Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
关键词Image classification local coordinate coding (LCC) local Gaussian coding (LGC) local Laplacian coding (LPC) local student coding (LSC) locally linear classification nonlinear approximation
DOI10.1109/TCYB.2015.2433926
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2012CB316400] ; Natural Science Foundation of China[61332016] ; Natural Science Foundation of China[61202234] ; Natural Science Foundation of China[61202322] ; Natural Science Foundation of China[61133003] ; Natural Science Foundation of China[61227004] ; Natural Science Foundation of China[61303154] ; Natural Science Foundation of China[61390510] ; Natural Science Foundation of China[61472387] ; Beijing Natural Science Foundation[4132010] ; Beijing Natural Science Foundation[KZ201310005006] ; Beijing Post-Doctoral Research Foundation ; Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000365320300026
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/9119
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Pang, Junbiao
作者单位1.Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
4.Harbin Inst Technol Weihai, Sch Comp Sci & Technol, Weihai 264209, Peoples R China
5.Beijing Univ Technol, Coll Metropolitan Transportat, Beijing 100124, Peoples R China
6.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
7.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Pang, Junbiao,Qin, Lei,Zhang, Chunjie,et al. Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification[J]. IEEE TRANSACTIONS ON CYBERNETICS,2015,45(12):2937-2947.
APA Pang, Junbiao,Qin, Lei,Zhang, Chunjie,Zhang, Weigang,Huang, Qingming,&Yin, Baocai.(2015).Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification.IEEE TRANSACTIONS ON CYBERNETICS,45(12),2937-2947.
MLA Pang, Junbiao,et al."Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification".IEEE TRANSACTIONS ON CYBERNETICS 45.12(2015):2937-2947.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pang, Junbiao]的文章
[Qin, Lei]的文章
[Zhang, Chunjie]的文章
百度学术
百度学术中相似的文章
[Pang, Junbiao]的文章
[Qin, Lei]的文章
[Zhang, Chunjie]的文章
必应学术
必应学术中相似的文章
[Pang, Junbiao]的文章
[Qin, Lei]的文章
[Zhang, Chunjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。