CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multi-View Discriminant Analysis
Kan, Meina1; Shan, Shiguang1; Zhang, Haihong2; Lao, Shihong2; Chen, Xilin1
2016
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号38期号:1页码:188-194
摘要In many computer vision systems, the same object can be observed at varying viewpoints or even by different sensors, which brings in the challenging demand for recognizing objects from distinct even heterogeneous views. In this work we propose a Multi-view Discriminant Analysis (MvDA) approach, which seeks for a single discriminant common space for multiple views in a non-pairwise manner by jointly learning multiple view-specific linear transforms. Specifically, our MvDA is formulated to jointly solve the multiple linear transforms by optimizing a generalized Rayleigh quotient, i.e., maximizing the between-class variations and minimizing the within-class variations from both intra-view and inter-view in the common space. By reformulating this problem as a ratio trace problem, the multiple linear transforms are achieved analytically and simultaneously through generalized eigenvalue decomposition. Furthermore, inspired by the observation that different views share similar data structures, a constraint is introduced to enforce the view-consistency of the multiple linear transforms. The proposed method is evaluated on three tasks: face recognition across pose, photo versus. sketch face recognition, and visual light image versus near infrared image face recognition on Multi-PIE, CUFSF and HFB databases respectively. Extensive experiments show that our MvDA achieves significant improvements compared with the best known results.
关键词Multi-view discriminant analysis cross-view recognition heterogeneous recognition common space
DOI10.1109/TPAMI.2015.2435740
收录类别SCI
语种英语
资助项目973 Program[2015CB351802] ; Natural Science Foundation of China[61173065] ; Natural Science Foundation of China[61222211] ; Natural Science Foundation of China[61402443] ; Natural Science Foundation of China[61390511] ; R&D Program for Implementation of Anti-Crime and Anti-Terrorism Technologies for a Safe and Secure Society, Special Coordination Fund for Promoting Science and Technology of MEXT, the Japanese Government
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000366669200014
出版者IEEE COMPUTER SOC
引用统计
被引频次:441[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/9042
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Kan, Meina
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.Omron Social Solut Co LTD, Kyoto, Japan
推荐引用方式
GB/T 7714
Kan, Meina,Shan, Shiguang,Zhang, Haihong,et al. Multi-View Discriminant Analysis[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2016,38(1):188-194.
APA Kan, Meina,Shan, Shiguang,Zhang, Haihong,Lao, Shihong,&Chen, Xilin.(2016).Multi-View Discriminant Analysis.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,38(1),188-194.
MLA Kan, Meina,et al."Multi-View Discriminant Analysis".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 38.1(2016):188-194.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
[Zhang, Haihong]的文章
百度学术
百度学术中相似的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
[Zhang, Haihong]的文章
必应学术
必应学术中相似的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
[Zhang, Haihong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。