CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A semi-supervised online sequential extreme learning machine method
Jia, Xibin1; Wang, Runyuan1; Liu, Junfa2; Powers, David M. W.1,3
2016-01-22
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号174页码:168-178
摘要This paper proposes a learning algorithm called Semi-supervised Online Sequential ELM, denoted as SOS-ELM. It aims to provide a solution for streaming data applications by learning from just the newly arrived observations, called a chunk. In addition, SOS-ELM can utilize both labeled and unlabeled training data by combining the advantages of two existing algorithms: Online Sequential ELM (OS-ELM) and Semi-Supervised ELM (SS-ELM). The rationale behind our algorithm exploits an optimal condition to alleviate empirical risk and structure risk used by SS-ELM, in combination with block calculation of matrices similar to OS-ELM. Efficient implementation of the SOS-ELM algorithm is made viable by an additional assumption that there is negligible structural relationship between chunks from different times. Experiments have been performed on standard benchmark problems for regression, balanced binary classification, unbalanced binary classification and multi-class classification by comparing the performance of the proposed SOS-ELM with OS-ELM and SS-ELM. The experimental results show that the SOS-ELM outperforms OS-ELM in generalization performance with similar training speed, and in addition outperforms SS-ELM with much lower supervision overheads. (C) 2015 Elsevier B.V. All rights reserved.
关键词Online Sequential ELM (OS-ELM) Semi-supervised ELM (SS-ELM) Semi-supervised online sequential ELM (SOS-ELM)
DOI10.1016/j.neucom.2015.04.102
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61375059] ; Natural Science Foundation of China[61175115] ; Beijing Natural Science Foundation[4122004] ; Beijing Natural Science Foundation[4152005] ; Specialized Research Fund for the Doctoral Program of Higher Education[20121103110031] ; Importation and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions[CITTCD201304035] ; Special training program for construction of teachers of Beijing High education - abroad training program for Senior visiting scholars by Beijing high education teacher training center[067145301400] ; Jing-Hua Talents Project of Beijing University of Technology[2014-JH-L06] ; International Communication Ability Development Plan for Young Teachers of Beijing University of Technology[2014-16]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000367276700016
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:40[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/8992
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jia, Xibin
作者单位1.Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Flinders Univ S Australia, Ctr Knowledge & Interact Technol, Bedford Pk, SA 5042, Australia
推荐引用方式
GB/T 7714
Jia, Xibin,Wang, Runyuan,Liu, Junfa,et al. A semi-supervised online sequential extreme learning machine method[J]. NEUROCOMPUTING,2016,174:168-178.
APA Jia, Xibin,Wang, Runyuan,Liu, Junfa,&Powers, David M. W..(2016).A semi-supervised online sequential extreme learning machine method.NEUROCOMPUTING,174,168-178.
MLA Jia, Xibin,et al."A semi-supervised online sequential extreme learning machine method".NEUROCOMPUTING 174(2016):168-178.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jia, Xibin]的文章
[Wang, Runyuan]的文章
[Liu, Junfa]的文章
百度学术
百度学术中相似的文章
[Jia, Xibin]的文章
[Wang, Runyuan]的文章
[Liu, Junfa]的文章
必应学术
必应学术中相似的文章
[Jia, Xibin]的文章
[Wang, Runyuan]的文章
[Liu, Junfa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。