CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Real-time online learning of Gaussian mixture model for opacity mapping
Zhou, Guo1,2,3; Zhu, Dengming1,2; Wei, Yi1,2; Wang, Zhaoqi1,2; Zhou, Yongquan4
2016-10-26
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号211页码:212-220
摘要Rendering volumetric scattering in real-time is a challenge due to the complex interactions between the light and the particles in the participating media. Assuming that a ray leaving the emitter is scattered only once along its path to the sensor, we propose to represent the extinction coefficient by a Gaussian mixture model. Then the model is trained with a large number of particles colliding that ray in an online way. A low-cost updating function based on the weighted maximum likelihood estimation is derived for the weighted stepwise expectation-maximization algorithm, which is fitted into the graphics pipeline as a stage of learning. This enables all those particles to contribute to the extinction on the fly without storing and sorting them together with respect to the emitter in a geometry pass. Our approach is able to accurately reconstruct the per-pixel transmittance of the opacity map for optically thick heterogeneous media in real-time but operate in bounded memory, using the recently introduced fragment shader critical section feature of the graphics processing unit. (C) 2016 Elsevier B.V. All rights reserved.
关键词Participating media Online expectation-maximization Shadow Order-independent transparency
DOI10.1016/j.neucom.2015.12.135
收录类别SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000384871700023
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7971
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhou, Guo
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Guangxi Univ Nationalities, Coll Informat Sci & Engn, Nanning 530006, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Guo,Zhu, Dengming,Wei, Yi,et al. Real-time online learning of Gaussian mixture model for opacity mapping[J]. NEUROCOMPUTING,2016,211:212-220.
APA Zhou, Guo,Zhu, Dengming,Wei, Yi,Wang, Zhaoqi,&Zhou, Yongquan.(2016).Real-time online learning of Gaussian mixture model for opacity mapping.NEUROCOMPUTING,211,212-220.
MLA Zhou, Guo,et al."Real-time online learning of Gaussian mixture model for opacity mapping".NEUROCOMPUTING 211(2016):212-220.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Guo]的文章
[Zhu, Dengming]的文章
[Wei, Yi]的文章
百度学术
百度学术中相似的文章
[Zhou, Guo]的文章
[Zhu, Dengming]的文章
[Wei, Yi]的文章
必应学术
必应学术中相似的文章
[Zhou, Guo]的文章
[Zhu, Dengming]的文章
[Wei, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。