Institute of Computing Technology, Chinese Academy IR
Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection | |
Pang, Junbiao1; Tao, Fei2; Zhang, Chunjie2; Zhang, Weigang3,4; Huang, Qingming4,5; Yin, Baocai6,7 | |
2016-12-01 | |
发表期刊 | IEEE TRANSACTIONS ON MULTIMEDIA |
ISSN | 1520-9210 |
卷号 | 18期号:12页码:2482-2493 |
摘要 | Detecting "hot" topics from the enormous user-generated content (UGC) data on web poses two main difficulties that the conventional approaches can barely handle: 1) poor feature representations from noisy images or short texts, and 2) uncertain roles of modalities where the visual content is either highly or weakly relevant to the textual cues due to the less-constrained UGC. In this paper, following the detection-by-ranking approach, we address above challenges by learning a robust latent representation from multiple, noisy and a high probability of the complementary features. Both the textual features and the visual ones are encoded into a k-nearest neighbor hybrid similarity graph (HSG), where nonnegative matrix factorization using random walk is introduced to generate topic candidates. An efficient fusion of multiple HSGs is then done by a latent poisson deconvolution, which consists of a poisson deconvolution with sparse basis similarity for each edge. Experiments show significantly improved accuracy of the proposed approach in comparison with the state-of-the-art methods on two public datasets. |
关键词 | K-nearest neighbor similarity graph latent poisson deconvolution (LPD) multi-view learning (MVL) user-generated content (UGC) web topic detection |
DOI | 10.1109/TMM.2016.2598439 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Basic Research Program of China (973 Program)[2012CB316400] ; National Basic Research Program of China (973 Program)[2015CB3351800] ; Natural Science Foundation of China[61332016] ; Natural Science Foundation of China[61472387] ; Natural Science Foundation of China[61303153] ; Natural Science Foundation of China[61390510] ; Natural Science Foundation of China[61303154] ; Beijing Post-Doctoral Research Foundation ; Beijing Municipal Commission of Education[KM201610005034] ; Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR)` |
WOS研究方向 | Computer Science ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications |
WOS记录号 | WOS:000388920200014 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/7831 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhang, Weigang |
作者单位 | 1.Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China 2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China 3.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China 4.Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100049, Peoples R China 5.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 6.Dalian Univ Technol, Adv Invocat Ctr Future Internet Technol, Dalian 116024, Peoples R China 7.Beijing Univ Technol, Beijing 100124, Peoples R China |
推荐引用方式 GB/T 7714 | Pang, Junbiao,Tao, Fei,Zhang, Chunjie,et al. Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2016,18(12):2482-2493. |
APA | Pang, Junbiao,Tao, Fei,Zhang, Chunjie,Zhang, Weigang,Huang, Qingming,&Yin, Baocai.(2016).Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection.IEEE TRANSACTIONS ON MULTIMEDIA,18(12),2482-2493. |
MLA | Pang, Junbiao,et al."Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection".IEEE TRANSACTIONS ON MULTIMEDIA 18.12(2016):2482-2493. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论