CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection
Pang, Junbiao1; Tao, Fei2; Zhang, Chunjie2; Zhang, Weigang3,4; Huang, Qingming4,5; Yin, Baocai6,7
2016-12-01
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号18期号:12页码:2482-2493
摘要Detecting "hot" topics from the enormous user-generated content (UGC) data on web poses two main difficulties that the conventional approaches can barely handle: 1) poor feature representations from noisy images or short texts, and 2) uncertain roles of modalities where the visual content is either highly or weakly relevant to the textual cues due to the less-constrained UGC. In this paper, following the detection-by-ranking approach, we address above challenges by learning a robust latent representation from multiple, noisy and a high probability of the complementary features. Both the textual features and the visual ones are encoded into a k-nearest neighbor hybrid similarity graph (HSG), where nonnegative matrix factorization using random walk is introduced to generate topic candidates. An efficient fusion of multiple HSGs is then done by a latent poisson deconvolution, which consists of a poisson deconvolution with sparse basis similarity for each edge. Experiments show significantly improved accuracy of the proposed approach in comparison with the state-of-the-art methods on two public datasets.
关键词K-nearest neighbor similarity graph latent poisson deconvolution (LPD) multi-view learning (MVL) user-generated content (UGC) web topic detection
DOI10.1109/TMM.2016.2598439
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2012CB316400] ; National Basic Research Program of China (973 Program)[2015CB3351800] ; Natural Science Foundation of China[61332016] ; Natural Science Foundation of China[61472387] ; Natural Science Foundation of China[61303153] ; Natural Science Foundation of China[61390510] ; Natural Science Foundation of China[61303154] ; Beijing Post-Doctoral Research Foundation ; Beijing Municipal Commission of Education[KM201610005034] ; Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR)`
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000388920200014
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7831
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Weigang
作者单位1.Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
3.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China
4.Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100049, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
6.Dalian Univ Technol, Adv Invocat Ctr Future Internet Technol, Dalian 116024, Peoples R China
7.Beijing Univ Technol, Beijing 100124, Peoples R China
推荐引用方式
GB/T 7714
Pang, Junbiao,Tao, Fei,Zhang, Chunjie,et al. Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2016,18(12):2482-2493.
APA Pang, Junbiao,Tao, Fei,Zhang, Chunjie,Zhang, Weigang,Huang, Qingming,&Yin, Baocai.(2016).Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection.IEEE TRANSACTIONS ON MULTIMEDIA,18(12),2482-2493.
MLA Pang, Junbiao,et al."Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection".IEEE TRANSACTIONS ON MULTIMEDIA 18.12(2016):2482-2493.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Zhang, Chunjie]的文章
百度学术
百度学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Zhang, Chunjie]的文章
必应学术
必应学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Zhang, Chunjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。