CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Modality-specific and hierarchical feature learning for RGB-D hand-held object recognition
Lv, Xiong1; Liu, Xinda2; Li, Xiangyang1; Li, Xue1,3; Jiang, Shuqiang1; He, Zhiqiang4
2017-02-01
发表期刊MULTIMEDIA TOOLS AND APPLICATIONS
ISSN1380-7501
卷号76期号:3页码:4273-4290
摘要Hand-held object recognition is an important research topic in image understanding and plays an essential role in human-machine interaction. With the easily available RGB-D devices, the depth information greatly promotes the performance of object segmentation and provides additional channel information. While how to extract a representative and discriminating feature from object region and efficiently take advantage of the depth information plays an important role in improving hand-held object recognition accuracy and eventual human-machine interaction experience. In this paper, we focus on a special but important area called RGB-D hand-held object recognition and propose a hierarchical feature learning framework for this task. First, our framework learns modality-specific features from RGB and depth images using CNN architectures with different network depth and learning strategies. Secondly a high-level feature learning network is implemented for a comprehensive feature representation. Different with previous works on feature learning and representation, the hierarchical learning method can sufficiently dig out the characteristics of different modal information and efficiently fuse them in a unified framework. The experimental results on HOD dataset illustrate the effectiveness of our proposed method.
关键词Feature learning RGB-D object recogntion Multiple modalities
DOI10.1007/s11042-016-3375-5
收录类别SCI
语种英语
资助项目National Basic Research 973 Program of China[2012CB316400] ; National Natural Science Foundation of China[61532018] ; National Natural Science Foundation of China[61322212] ; National High Technology Research and Development 863 Program of China[2014AA015202] ; Lenovo Outstanding Young Scientists Program (LOYS)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000396051200054
出版者SPRINGER
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7479
专题中国科学院计算技术研究所期刊论文_英文
通讯作者He, Zhiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Ningxia Univ, Sch Math & Comp Sci, Ningxia 750021, Peoples R China
3.Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao, Shandong, Peoples R China
4.Lenovo Corp Res, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Lv, Xiong,Liu, Xinda,Li, Xiangyang,et al. Modality-specific and hierarchical feature learning for RGB-D hand-held object recognition[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2017,76(3):4273-4290.
APA Lv, Xiong,Liu, Xinda,Li, Xiangyang,Li, Xue,Jiang, Shuqiang,&He, Zhiqiang.(2017).Modality-specific and hierarchical feature learning for RGB-D hand-held object recognition.MULTIMEDIA TOOLS AND APPLICATIONS,76(3),4273-4290.
MLA Lv, Xiong,et al."Modality-specific and hierarchical feature learning for RGB-D hand-held object recognition".MULTIMEDIA TOOLS AND APPLICATIONS 76.3(2017):4273-4290.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lv, Xiong]的文章
[Liu, Xinda]的文章
[Li, Xiangyang]的文章
百度学术
百度学术中相似的文章
[Lv, Xiong]的文章
[Liu, Xinda]的文章
[Li, Xiangyang]的文章
必应学术
必应学术中相似的文章
[Lv, Xiong]的文章
[Liu, Xinda]的文章
[Li, Xiangyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。