CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Parallel Incremental Frequent Itemset Mining for Large Data
Song, Yu-Geng1,2; Cui, Hui-Min1,2; Feng, Xiao-Bing1
2017-03-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号32期号:2页码:368-385
摘要Frequent itemset mining (FIM) is a popular data mining issue adopted in many fields, such as commodity recommendation in the retail industry, log analysis in web searching, and query recommendation (or related search). A large number of FIM algorithms have been proposed to obtain better performance, including parallelized algorithms for processing large data volumes. Besides, incremental FIM algorithms are also proposed to deal with incremental database updates. However, most of these incremental algorithms have low parallelism, causing low efficiency on huge databases. This paper presents two parallel incremental FIM algorithms called IncMiningPFP and IncBuildingPFP, implemented on the MapReduce framework. IncMiningPFP preserves the FP-tree mining results of the original pass, and utilizes them for incremental calculations. In particular, we propose a method to generate a partial FP-tree in the incremental pass, in order to avoid unnecessary mining work. Further, some of the incremental parallel tasks can be omitted when the inserted transactions include fewer items. IncbuildingPFP preserves the CanTrees built in the original pass, and then adds new transactions to them during the incremental passes. Our experimental results show that IncMiningPFP can achieve significant speedup over PFP (Parallel FPGrowth) and a sequential incremental algorithm (CanTree) in most cases of incremental input database, and in other cases IncBuildingPFP can achieve it.
关键词incremental parallel FPGrowth data mining frequent itemset mining MapReduce
DOI10.1007/s11390-017-1726-y
收录类别SCI
语种英语
资助项目National High Technology Research and Development 863 Program of China[2015AA011505] ; National High Technology Research and Development 863 Program of China[2015AA015306] ; National High Technology Research and Development 863 Program of China[2012AA010902] ; National Natural Science Foundation of China[61202055] ; National Natural Science Foundation of China[61221062] ; National Natural Science Foundation of China[61521092] ; National Natural Science Foundation of China[61303053] ; National Natural Science Foundation of China[61432016] ; National Natural Science Foundation of China[61402445] ; National Natural Science Foundation of China[61672492] ; National Key Research and Development Program of China[2016YFB1000402]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:000397835500014
出版者SCIENCE PRESS
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7412
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Song, Yu-Geng
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Song, Yu-Geng,Cui, Hui-Min,Feng, Xiao-Bing. Parallel Incremental Frequent Itemset Mining for Large Data[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2017,32(2):368-385.
APA Song, Yu-Geng,Cui, Hui-Min,&Feng, Xiao-Bing.(2017).Parallel Incremental Frequent Itemset Mining for Large Data.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,32(2),368-385.
MLA Song, Yu-Geng,et al."Parallel Incremental Frequent Itemset Mining for Large Data".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 32.2(2017):368-385.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Yu-Geng]的文章
[Cui, Hui-Min]的文章
[Feng, Xiao-Bing]的文章
百度学术
百度学术中相似的文章
[Song, Yu-Geng]的文章
[Cui, Hui-Min]的文章
[Feng, Xiao-Bing]的文章
必应学术
必应学术中相似的文章
[Song, Yu-Geng]的文章
[Cui, Hui-Min]的文章
[Feng, Xiao-Bing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。