CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling
Liu, Siyuan1; Wang, Shuhui2
2017-04-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号29期号:4页码:898-911
摘要In this paper, we detect communities from trajectories. Existing algorithms for trajectory clustering usually rely on simplex representation and a single proximity-related metric. Unfortunately, additional information markers (e.g., social interactions or semantics in the spatial layout) are ignored, leading to the inability to fully discover the communities in trajectory database. This is especially true for human-generated trajectories, where additional fine-grained markers (e.g., movement velocity at certain locations, or the sequence of semantic spaces visited) are especially useful in capturing latent relationships among community members. To overcome this limitation, we propose TODMIS, a general framework for Trajectory-based cOmmunity Detection by diffusion modeling on Multiple Information Sources. TODMIS combines additional information with raw trajectory data and construct the diffusion process on multiple similarity metrics. It also learns the consistent graph Laplacians by constructing the multi-modal diffusion process and optimizing the heat kernel coupling on each pair of similarity matrices from multiple information sources. Then, dense sub-graph detection is used to discover the set of distinct communities (including community size) on the coupled multi-graph representation. At last, based on the community information, we propose a novel model for online recommendation. We evaluate TODMIS and our online recommendation methods using different real-life datasets. Experimental results demonstrate the effectiveness and efficiency of our methods.
关键词Community detection trajectory multiple information sources semantic information
DOI10.1109/TKDE.2016.2637898
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61572488] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61673241] ; National Natural Science Foundation of China[61303160] ; Bureau of Frontier Sciences and Education (CAS)[QYZDJ-SSW-SYS013] ; Basic Research Program of Shenzhen[JCYJ20140610152828686]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000397581000014
出版者IEEE COMPUTER SOC
引用统计
被引频次:35[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7296
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Siyuan
作者单位1.Penn State Univ, Smeal Coll Business, University Pk, PA 16802 USA
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Siyuan,Wang, Shuhui. Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2017,29(4):898-911.
APA Liu, Siyuan,&Wang, Shuhui.(2017).Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,29(4),898-911.
MLA Liu, Siyuan,et al."Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 29.4(2017):898-911.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Siyuan]的文章
[Wang, Shuhui]的文章
百度学术
百度学术中相似的文章
[Liu, Siyuan]的文章
[Wang, Shuhui]的文章
必应学术
必应学术中相似的文章
[Liu, Siyuan]的文章
[Wang, Shuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。