Institute of Computing Technology, Chinese Academy IR
Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling | |
Liu, Siyuan1; Wang, Shuhui2 | |
2017-04-01 | |
发表期刊 | IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING |
ISSN | 1041-4347 |
卷号 | 29期号:4页码:898-911 |
摘要 | In this paper, we detect communities from trajectories. Existing algorithms for trajectory clustering usually rely on simplex representation and a single proximity-related metric. Unfortunately, additional information markers (e.g., social interactions or semantics in the spatial layout) are ignored, leading to the inability to fully discover the communities in trajectory database. This is especially true for human-generated trajectories, where additional fine-grained markers (e.g., movement velocity at certain locations, or the sequence of semantic spaces visited) are especially useful in capturing latent relationships among community members. To overcome this limitation, we propose TODMIS, a general framework for Trajectory-based cOmmunity Detection by diffusion modeling on Multiple Information Sources. TODMIS combines additional information with raw trajectory data and construct the diffusion process on multiple similarity metrics. It also learns the consistent graph Laplacians by constructing the multi-modal diffusion process and optimizing the heat kernel coupling on each pair of similarity matrices from multiple information sources. Then, dense sub-graph detection is used to discover the set of distinct communities (including community size) on the coupled multi-graph representation. At last, based on the community information, we propose a novel model for online recommendation. We evaluate TODMIS and our online recommendation methods using different real-life datasets. Experimental results demonstrate the effectiveness and efficiency of our methods. |
关键词 | Community detection trajectory multiple information sources semantic information |
DOI | 10.1109/TKDE.2016.2637898 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61572488] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61673241] ; National Natural Science Foundation of China[61303160] ; Bureau of Frontier Sciences and Education (CAS)[QYZDJ-SSW-SYS013] ; Basic Research Program of Shenzhen[JCYJ20140610152828686] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000397581000014 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/7296 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Liu, Siyuan |
作者单位 | 1.Penn State Univ, Smeal Coll Business, University Pk, PA 16802 USA 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Siyuan,Wang, Shuhui. Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2017,29(4):898-911. |
APA | Liu, Siyuan,&Wang, Shuhui.(2017).Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,29(4),898-911. |
MLA | Liu, Siyuan,et al."Trajectory Community Discovery and Recommendation by Multi-Source Diffusion Modeling".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 29.4(2017):898-911. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Siyuan]的文章 |
[Wang, Shuhui]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Siyuan]的文章 |
[Wang, Shuhui]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Siyuan]的文章 |
[Wang, Shuhui]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论