CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization
Yao, Hantao1,2; Zhang, Dongming3; Li, Jintao1; Zhou, Jianshe4; Zhang, Shiliang5; Zhang, Yongdong1,2
2017-07-01
发表期刊IMAGE AND VISION COMPUTING
ISSN0262-8856
卷号63页码:24-37
摘要Different from the basic-level classification, the Fine-Grained Visual Categorization (FGVC) aims to classify objects belonging to the same species. Therefore, it is more challenging than the basic-level classification. Recently, significant advances have been achieved in FGVC. However, most of the existing methods require bounding boxes or part annotations for training and testing, resulting in limited usability and flexibility. To conquer these limitations, we aim to automatically detect the bounding boxes and parts for FGVC. The bounding boxes are acquired by transferring bounding boxes from training images to testing images. Based on the generated bounding boxes, we employ a multiple-layer Orientational Spatial Part (OSP) model to learn local parts for the object. To achieve more discriminative part modeling, the Discriminative Spatial Part (DSP) model is proposed to select the discriminative parts from OSP. Finally, we employ Convolutional Neural Network (CNN) as the feature extractor and train a linear SVM as the classifier. Extensive experiments on public benchmark datasets manifest the impressive performance of our method, i.e., classification accuracy achieves 79.8% on CUB-200-2011 and 85.7% on Aircraft, which are higher than many existing methods using manual annotations. (C) 2017 Elsevier B.V. All rights reserved.
关键词Orientational Spatial Part model Discriminative Spatial Part modeling Fine-Grained Visual Categorization CNN
DOI10.1016/j.imavis.2017.05.003
收录类别SCI
语种英语
资助项目National Nature Science Foundation of China (NSFC)[61525206] ; National Nature Science Foundation of China (NSFC)[61672495] ; National Nature Science Foundation of China (NSFC)[61572050] ; National Nature Science Foundation of China (NSFC)[91538111] ; National Nature Science Foundation of China (NSFC)[61620106009] ; National Key Research and Development Plan of China[2016YFB0801203] ; National Key Research and Development Plan of China[2016YFB0801200]
WOS研究方向Computer Science ; Engineering ; Optics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Optics
WOS记录号WOS:000404312400003
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7116
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Yongdong
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, Beijing 100029, Peoples R China
4.Capital Normal Univ, Beijing Adv Innovat Ctr Imaging Technol, Beijing 100048, Peoples R China
5.Peking Univ, Elect Engn & Comp Sci, Beijing 100871, Peoples R China
推荐引用方式
GB/T 7714
Yao, Hantao,Zhang, Dongming,Li, Jintao,et al. DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization[J]. IMAGE AND VISION COMPUTING,2017,63:24-37.
APA Yao, Hantao,Zhang, Dongming,Li, Jintao,Zhou, Jianshe,Zhang, Shiliang,&Zhang, Yongdong.(2017).DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization.IMAGE AND VISION COMPUTING,63,24-37.
MLA Yao, Hantao,et al."DSP: Discriminative Spatial Part modeling for Fine-Grained Visual Categorization".IMAGE AND VISION COMPUTING 63(2017):24-37.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Dongming]的文章
[Li, Jintao]的文章
百度学术
百度学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Dongming]的文章
[Li, Jintao]的文章
必应学术
必应学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Dongming]的文章
[Li, Jintao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。