CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multi-label classification by exploiting local positive and negative pairwise label correlation
Huang, Jun1,2; Li, Guorong1; Wang, Shuhui3; Xue, Zhe1; Huang, Qingming1,3
2017-09-27
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号257页码:164-174
摘要In multi-label learning, each example is represented by a single instance and associated with multiple class labels. Existing multi-label learning algorithms mainly exploit label correlations globally, by assuming that the label correlations are shared by all the examples. Moreover, these multi-label learning algorithms exploit the positive label correlations among different class labels. In practical applications, however, different examples may share different label correlations, and the labels are not only positive correlated, but also mutually exclusive with each other. In this paper, we propose a simple and effective Bayesian model for multi-label classification by exploiting Local positive and negative Pairwise Label Correlations, named LPLC. In the training stage, the positive and negative label correlations of each ground truth label for all the training examples are discovered. In the test stage, the k nearest neighbors and their corresponding positive and negative pairwise label correlations for each test example are first identified, then we make prediction through maximizing the posterior probability, which is estimated on the label distribution, the local positive and negative pairwise label correlations embodied in the k nearest neighbors. A comparative study with the state-of-the-art approaches manifests a competitive performance of our proposed method. (C) 2017 Elsevier B.V. All rights reserved.
关键词Multi-label classification k nearest neighbors Local label correlation Positive and negative label correlation
DOI10.1016/j.neucom.2016.12.073
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2015CB351802] ; National Natural Science Foundation of China[61303153] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61572488] ; National Natural Science Foundation of China[61672497] ; 863 program of China[2014AA015202] ; Bureau of Frontier Sciences and Education (CAS)[QYZDJ-SSW-SYS013]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000404319800018
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:78[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/7097
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Guorong; Huang, Qingming
作者单位1.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 101408, Peoples R China
2.Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan 243032, Peoples R China
3.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Huang, Jun,Li, Guorong,Wang, Shuhui,et al. Multi-label classification by exploiting local positive and negative pairwise label correlation[J]. NEUROCOMPUTING,2017,257:164-174.
APA Huang, Jun,Li, Guorong,Wang, Shuhui,Xue, Zhe,&Huang, Qingming.(2017).Multi-label classification by exploiting local positive and negative pairwise label correlation.NEUROCOMPUTING,257,164-174.
MLA Huang, Jun,et al."Multi-label classification by exploiting local positive and negative pairwise label correlation".NEUROCOMPUTING 257(2017):164-174.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Jun]的文章
[Li, Guorong]的文章
[Wang, Shuhui]的文章
百度学术
百度学术中相似的文章
[Huang, Jun]的文章
[Li, Guorong]的文章
[Wang, Shuhui]的文章
必应学术
必应学术中相似的文章
[Huang, Jun]的文章
[Li, Guorong]的文章
[Wang, Shuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。