Institute of Computing Technology, Chinese Academy IR
Hierarchical deep semantic representation for visual categorization | |
Zhang, Chunjie1,2; Li, Ruiying2; Huang, Qingming2,3; Tian, Qi4 | |
2017-09-27 | |
发表期刊 | NEUROCOMPUTING |
ISSN | 0925-2312 |
卷号 | 257页码:88-96 |
摘要 | Visual features are unsatisfactory to effectively describe the visual semantics. However, single layer based semantic modeling may be not able to cope with complicated semantic contents. In this paper, we propose Hierarchical Deep Semantic Representation (H-DSR), a hierarchical framework which combines semantic context modeling with visual features. First, the input image is sampled with spatially fixed grids. Deep features are then extracted for each sample in particular location. Second, using pre-learned classifiers, a detection response map is constructed for each patch. Semantic representation is then extracted from the map, which have a sense of latent semantic context. We combine the semantic and visual representations for joint representation. Third, a hierarchical deep semantic representation is built with recurrent reconstructions using three layers. The concatenated visual and semantic representations are used as the inputs of subsequent layers for semantic representation extraction. Finally, we verify the effectiveness of H-DSR for visual categorization on two publicly available datasets: Oxford Flowers 17 and UIUC-Sports. Improved performances are obtained over many baseline methods. (C) 2017 Elsevier B.V. All rights reserved. |
关键词 | Semantic representation Visual categorization Image representation |
DOI | 10.1016/j.neucom.2016.11.065 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61303154] ; National Natural Science Foundation of China[61332016] ; National Basic Research Program of China (973 Program)[2012CB316400] ; National Basic Research Program of China (973 Program)[2015CB351802] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000404319800010 |
出版者 | ELSEVIER SCIENCE BV |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/7083 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Huang, Qingming |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, Key Lab Intell Info Proc, Beijing 100190, Peoples R China 4.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA |
推荐引用方式 GB/T 7714 | Zhang, Chunjie,Li, Ruiying,Huang, Qingming,et al. Hierarchical deep semantic representation for visual categorization[J]. NEUROCOMPUTING,2017,257:88-96. |
APA | Zhang, Chunjie,Li, Ruiying,Huang, Qingming,&Tian, Qi.(2017).Hierarchical deep semantic representation for visual categorization.NEUROCOMPUTING,257,88-96. |
MLA | Zhang, Chunjie,et al."Hierarchical deep semantic representation for visual categorization".NEUROCOMPUTING 257(2017):88-96. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论