CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
AutoBD: Automated Bi-Level Description for Scalable Fine-Grained Visual Categorization
Yao, Hantao1,2; Zhang, Shiliang3; Yan, Chenggang4; Zhang, Yongdong1,2; Li, Jintao1; Tian, Qi5
2018
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号27期号:1页码:10-23
摘要Compared with traditional image classification, fine-grained visual categorization is a more challenging task, because it targets to classify objects belonging to the same species, e.g., classify hundreds of birds or cars. In the past several years, researchers have made many achievements on this topic. However, most of them are heavily dependent on the artificial annotations, e.g., bounding boxes, part annotations, and so on. The requirement of artificial annotations largely hinders the scalability and application. Motivated to release such dependence, this paper proposes a robust and discriminative visual description named Automated Bi-level Description (AutoBD). "Bi-level" denotes two complementary part-level and object-level visual descriptions, respectively. AutoBD is "automated," because it only requires the image-level labels of training images and does not need any annotations for testing images. Compared with the part annotations labeled by the human, the image-level labels can be easily acquired, which thus makes AutoBD suitable for large-scale visual categorization. Specifically, the part-level description is extracted by identifying the local region saliently representing the visual distinctiveness. The object-level description is extracted from object bounding boxes generated with a co-localization algorithm. Although only using the image-level labels, AutoBD outperforms the recent studies on two public benchmark, i.e., classification accuracy achieves 81.6% on CUB-200-2011 and 88.9% on Car-196, respectively. On the large-scale Birdsnap data set, AutoBD achieves the accuracy of 68%, which is currently the best performance to the best of our knowledge.
DOI10.1109/TIP.2017.2751960
收录类别SCI
语种英语
资助项目National Nature Science Foundation of China[61525206] ; National Nature Science Foundation of China[61572050] ; National Nature Science Foundation of China[91538111] ; National Nature Science Foundation of China[61429201] ; National Nature Science Foundation of China[61428207] ; Beijing Advanced Innovation Center for Imaging Technology[BAICIT-2016009] ; ARO[W911NF-15-1-0290] ; NEC Laboratories of America ; Blippar
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000413256300001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:35[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/6878
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Yongdong; Tian, Qi
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
4.Hangzhou Dianzi Univ, Sch Inst Informat & Control, Hangzhou 541004, Zhejiang, Peoples R China
5.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Yao, Hantao,Zhang, Shiliang,Yan, Chenggang,et al. AutoBD: Automated Bi-Level Description for Scalable Fine-Grained Visual Categorization[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2018,27(1):10-23.
APA Yao, Hantao,Zhang, Shiliang,Yan, Chenggang,Zhang, Yongdong,Li, Jintao,&Tian, Qi.(2018).AutoBD: Automated Bi-Level Description for Scalable Fine-Grained Visual Categorization.IEEE TRANSACTIONS ON IMAGE PROCESSING,27(1),10-23.
MLA Yao, Hantao,et al."AutoBD: Automated Bi-Level Description for Scalable Fine-Grained Visual Categorization".IEEE TRANSACTIONS ON IMAGE PROCESSING 27.1(2018):10-23.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Shiliang]的文章
[Yan, Chenggang]的文章
百度学术
百度学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Shiliang]的文章
[Yan, Chenggang]的文章
必应学术
必应学术中相似的文章
[Yao, Hantao]的文章
[Zhang, Shiliang]的文章
[Yan, Chenggang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。