CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Object Tracking Using Multiple Features and Adaptive Model Updating
Hu, Qingyong1; Guo, Yulan1,2; Lin, Zaiping1; An, Wei1; Cheng, Hongwei1
2017-11-01
发表期刊IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
ISSN0018-9456
卷号66期号:11页码:2882-2897
摘要Correlation filter-based tracking methods have been intensively investigated for their high efficiency and robustness. However, a single feature-based tracker cannot adapt to challenging situations, such as severe deformation, rotation, and illumination variations. Besides, a simple linear interpolation-based model updating mechanism is prone to model degradation, and consequently tracker drifting. In this paper, a 2-D location filter is combined with a 1-D scale filter to jointly estimate the state of object under tracking, and three complementary features are integrated to further enhance the overall tracking performance. Besides, we define a penalty factor for adaptive model updating, to achieve a balance between stability and flexibility, especially when the object is under occlusion. Extensive experiments have been conducted on four large-scale data sets, namely, the object tracking benchmark, VOT15, Temple-Color128, and the UAV123 tracking benchmark. Quantitative and qualitative results show that our proposed tracker achieves promising results in terms of tracking accuracy, robustness, and speed as compared with other popular trackers, and is highly suitable for real-time applications, such as unmanned aerial vehicles. It outperforms the state-of-the-art methods under different nuisances, including scale variation, deformation, occlusion, rotation, and out-of-view.
关键词Adaptive model updating correlation filters multiple feature integration object tracking
DOI10.1109/TIM.2017.2729378
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61602499] ; National Natural Science Foundation of China[61471371] ; National Postdoctoral Program for Innovative Talents[BX201600172] ; China Postdoctoral Science Foundation
WOS研究方向Engineering ; Instruments & Instrumentation
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:000412573300010
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:23[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/6782
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Guo, Yulan
作者单位1.Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Hu, Qingyong,Guo, Yulan,Lin, Zaiping,et al. Object Tracking Using Multiple Features and Adaptive Model Updating[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2017,66(11):2882-2897.
APA Hu, Qingyong,Guo, Yulan,Lin, Zaiping,An, Wei,&Cheng, Hongwei.(2017).Object Tracking Using Multiple Features and Adaptive Model Updating.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,66(11),2882-2897.
MLA Hu, Qingyong,et al."Object Tracking Using Multiple Features and Adaptive Model Updating".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 66.11(2017):2882-2897.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Qingyong]的文章
[Guo, Yulan]的文章
[Lin, Zaiping]的文章
百度学术
百度学术中相似的文章
[Hu, Qingyong]的文章
[Guo, Yulan]的文章
[Lin, Zaiping]的文章
必应学术
必应学术中相似的文章
[Hu, Qingyong]的文章
[Guo, Yulan]的文章
[Lin, Zaiping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。