CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Region similarity arrangement for large-scale image retrieval
Zhang, Dongming1,2,4; Tang, Jingya1,2; Jin, Guoqing1,2; Zhang, Yongdong1,2; Tian, Qi3
2018-01-10
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号272页码:461-470
摘要We propose a promising method of geometric verification to improve the precision of Bag-of-Words (BoW) model in image retrieval. Most previous methods focus on the positions of interest points or the absolute differences of regions' scales and angles. In contrast, our method, named Region Similarity Arrangement (RSA), exploits the spatial arrangement of interest regions. For each image, RSA constructs a Region Property Space, regarding each region's (scale, angle) pair as a point in a polar coordinate system, and encodes the arrangement of these points into the BoW vector. Furthermore, based on the particular distribution of points in Region Property Space, we design a Spatial Weighting to reduce the burstiness phenomenon during query. From experimental results on Holidays, Oxford5K and Paris, RSA could get comparable results with state-of-the-art methods. In addition, RSA increases no extra memory and negligible computational consumption compared with the baseline BoW approach. (C) 2017 Published by Elsevier B.V.
关键词Content based image retrieval Geometric verification Region property space Spatial weighting
DOI10.1016/j.neucom.2017.07.025
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFB0801203] ; National Key Research and Development Program of China[2016YFB0801200] ; National Natural Science Foundation of China[61672495] ; National Natural Science Foundation of China[61273247] ; National Natural Science Foundation of China[61303159] ; National Natural Science Foundation of China[61271428]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000413821400048
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/6550
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Tang, Jingya
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
3.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX USA
4.Coordinat Ctr China, Emergency Response Tech Team, Natl Comp Network, Nanjing, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Dongming,Tang, Jingya,Jin, Guoqing,et al. Region similarity arrangement for large-scale image retrieval[J]. NEUROCOMPUTING,2018,272:461-470.
APA Zhang, Dongming,Tang, Jingya,Jin, Guoqing,Zhang, Yongdong,&Tian, Qi.(2018).Region similarity arrangement for large-scale image retrieval.NEUROCOMPUTING,272,461-470.
MLA Zhang, Dongming,et al."Region similarity arrangement for large-scale image retrieval".NEUROCOMPUTING 272(2018):461-470.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Dongming]的文章
[Tang, Jingya]的文章
[Jin, Guoqing]的文章
百度学术
百度学术中相似的文章
[Zhang, Dongming]的文章
[Tang, Jingya]的文章
[Jin, Guoqing]的文章
必应学术
必应学术中相似的文章
[Zhang, Dongming]的文章
[Tang, Jingya]的文章
[Jin, Guoqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。