CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges
Yin, Zekun1; Lan, Haidong1; Tan, Guangming2; Lu, Mian3; Vasilakos, Athanasios V.4; Liu, Weiguo1
2017
发表期刊COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
ISSN2001-0370
卷号15页码:403-411
摘要The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics. (C) 2017 The Authors. Published by Elsevier B.V.
关键词Computational biology applications Computing platforms Big biological data NGS GPU Intel MIC
DOI10.1016/j.csbj.2017.07.004
收录类别SCI
语种英语
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology
WOS类目Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology
WOS记录号WOS:000425900600030
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:38[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/6151
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liu, Weiguo
作者单位1.Shandong Univ, Jinan, Shandong, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Huawei Singapore Res Ctr, Singapore, Singapore
4.Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, SE-93187 Skelleftea, Sweden
推荐引用方式
GB/T 7714
Yin, Zekun,Lan, Haidong,Tan, Guangming,et al. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges[J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,2017,15:403-411.
APA Yin, Zekun,Lan, Haidong,Tan, Guangming,Lu, Mian,Vasilakos, Athanasios V.,&Liu, Weiguo.(2017).Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL,15,403-411.
MLA Yin, Zekun,et al."Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges".COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL 15(2017):403-411.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yin, Zekun]的文章
[Lan, Haidong]的文章
[Tan, Guangming]的文章
百度学术
百度学术中相似的文章
[Yin, Zekun]的文章
[Lan, Haidong]的文章
[Tan, Guangming]的文章
必应学术
必应学术中相似的文章
[Yin, Zekun]的文章
[Lan, Haidong]的文章
[Tan, Guangming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。