CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A novel random forests based class incremental learning method for activity recognition
Hu, Chunyu1,2,3; Chen, Yiqiang1,2,3; Hu, Lisha1,2,3,4; Peng, Xiaohui1,3
2018-06-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号78页码:277-290
摘要Automatic activity recognition is an active research topic which aims to identify human activities automatically. A significant challenge is to recognize new activities effectively. In this paper, we propose an effective class incremental learning method, named Class Incremental Random Forests (CIRF), to enable existing activity recognition models to identify new activities. We design a separating axis theorem based splitting strategy to insert internal nodes and adopt Gini index or information gain to split leaves of the decision tree in the random forests (RF). With these two strategies, both inserting new nodes and splitting leaves are allowed in the incremental learning phase. We evaluate our method on three UCI public activity datasets and compare with other state-of-the-art methods. Experimental results show that the proposed incremental learning method converges to the performance of batch learning methods (RF and extremely randomized trees). Compared with other state-of-the-art methods, it is able to recognize new class data continuously with a better performance. (C) 2018 Elsevier Ltd. All rights reserved.
关键词Class incremental learning Activity recognition Random forests
DOI10.1016/j.patcog.2018.01.025
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2017YFB1002801] ; Natural Science Foundation of China[61572471] ; Chinese Academy of Sciences Pioneer Hundred Talents Program[Y704061000] ; Science and Technology Planning Project of Guangdong Province, China[2015B010105001]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000428490900021
出版者ELSEVIER SCI LTD
引用统计
被引频次:76[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5900
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Yiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
4.Hebei Univ Econ & Business, Shijiazhuang, Hebei, Peoples R China
推荐引用方式
GB/T 7714
Hu, Chunyu,Chen, Yiqiang,Hu, Lisha,et al. A novel random forests based class incremental learning method for activity recognition[J]. PATTERN RECOGNITION,2018,78:277-290.
APA Hu, Chunyu,Chen, Yiqiang,Hu, Lisha,&Peng, Xiaohui.(2018).A novel random forests based class incremental learning method for activity recognition.PATTERN RECOGNITION,78,277-290.
MLA Hu, Chunyu,et al."A novel random forests based class incremental learning method for activity recognition".PATTERN RECOGNITION 78(2018):277-290.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Chunyu]的文章
[Chen, Yiqiang]的文章
[Hu, Lisha]的文章
百度学术
百度学术中相似的文章
[Hu, Chunyu]的文章
[Chen, Yiqiang]的文章
[Hu, Lisha]的文章
必应学术
必应学术中相似的文章
[Hu, Chunyu]的文章
[Chen, Yiqiang]的文章
[Hu, Lisha]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。